Browse > Article
http://dx.doi.org/10.12989/eas.2020.18.6.719

Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD  

Raeesi, Farzad (Faculty of Civil Engineering, University of Tabriz)
Shirgir, Sina (Faculty of Civil Engineering, University of Tabriz)
Azar, Bahman F. (Faculty of Civil Engineering, University of Tabriz)
Veladi, Hedayat (Faculty of Civil Engineering, University of Tabriz)
Ghaffarzadeh, Hosein (Faculty of Civil Engineering, University of Tabriz)
Publication Information
Earthquakes and Structures / v.18, no.6, 2020 , pp. 719-730 More about this Journal
Abstract
Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.
Keywords
salp swarm algorithm; enhanced SSA; opposition based learning; merit function; optimization; multiple tuned mass damper;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Aghabalaei Baghaei K., Ghaffarzadeh H. and Younespour A. (2019), "Orthogonal function-based equivalent linearization for sliding mode control of nonlinear systems", Struct. Control Health Monit., 26(8), 2372. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2372.
2 Arora, S. and Anand, P. (2019), "Chaotic grasshopper optimization algorithm for global optimization", Neural Comput. Appl., 31(8), 4385-4405. https://doi.org/10.1007/s00521-018-3343-2.   DOI
3 Azar, B.F., Veladi, H., Raeesi, F. and Talatahari, S. (2020a), "Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer", Eng. Struct., 214, 110657. https://doi.org/10.1016/j.engstruct.2020.110657.   DOI
4 Azar, B.F., Veladi H., Talatahari S. and Raeesi F. (2020b), "Optimal design of magnetorheological damper based on tuning bouc-wen model parameters using hybrid algorithms", KSCE J. Civil Eng., 24(3), 867-878. https://doi.org/10.1007/s12205-020-0988-z.   DOI
5 Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.   DOI
6 Bekdas, G. and Nigdeli, S.M. (2013), "Response of discussion "Estimating optimum parameters of tuned mass dampers using harmony search', Eng. Struct., 58, 265-267. https://doi.org/10.1016/j.engstruct.2013.08.015.   DOI
7 Chey, M.H. and Kim, J.U. (2012), "Parametric control of structural responses using an optimal passive tuned mass damper under stationary Gaussian white noise excitations", Front. Struct. Civil Eng., 6(3), 267-280. https://doi.org/10.1007/s11709-012-0170-x.
8 Den Hartog J.P. (1985), "Mechanical vibrations", Courier Corporation.
9 Der Kiureghian A., Zhang, Y. and Li, C.C. (1994), "Inverse reliability problem", J. Eng. Mech., 120(5), 1154-1159. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(1154).   DOI
10 Fadel, Miguel, L.F., Lopez, R.H. and Miguel, L.F.F. (2013), "Discussion of paper: "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9) (2011) 2716-2723. https://doi.org/10.1016/j.engstruct.2013.03.042.   DOI
11 Fisco, N. and Adeli, H. (2011a), "Smart structures: part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034.   DOI
12 Fisco, N. and Adeli, H. (2011b), "Smart structures: part II-hybrid control systems and control strategies", Scientia Iranica, 18(3), 285-295. https://doi.org/10.1016/j.scient.2011.05.035.   DOI
13 Ghaffarzadeh, H. and Younespour, A. (2014), "Active tendons control of structures using block pulse functions", Struct. Control Health Monit., 21(12), 1453-1464. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1656.   DOI
14 Ghaffarzadeh, H. and Raeisi, F. (2016), "Damage identification in truss structures using finite element model updating and imperialist competitive algorithm", Jordan J. Civil Eng., 10(2), 266-277. https://doi.org/10.12816/0026340.   DOI
15 Kaveh A., Mohammadi S., Hosseini O.K., Keyhani A., Kalatjari V. (2015), "Optimum parameters of tuned mass dampers for seismic applications using charged system search", Iranian J. Sci. Technol. Trans. Civil Eng., 39(C1), 21-40. https://doi.org/10.22099/ijstc.2015.2739.
16 Hadi, M.N. and Arfiadi Y. (1998), "Optimum design of absorber for MDOF structures", J. Struct. Eng., 124(11), 1272-1280. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272).   DOI
17 Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.   DOI
18 Han B., Yan, W.T., Cu, V.H., Zhu, L. and Xie, H.B. (2019), "H-TMD with hybrid control method for vibration control of long span cable-stayed bridge", Earthq. Struct., 16(3), 349-358. https://doi.org/10.12989/eas.2019.16.3.349.   DOI
19 Lee, C.L., Chen, Y.T., Chung, L.L. and Wang Y.P. (2006), "Optimal design theories and applications of tuned mass dampers", Eng. Struct., 28(1), 43-53. https://doi.org/10.1016/j.engstruct.2005.06.023.   DOI
20 Li, C. (2002), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF", Earthq. Eng. Struct. Dyn., 31(4), 897-919. https://doi.org/10.1002/eqe.128.   DOI
21 Li, C. and Liu, Y. (2003), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on the uniform distribution of system parameters", Earthq. Eng. Struct. Dyn., 32(5), 671-690. https://doi.org/10.1002/eqe.239.   DOI
22 Li, C. and Qu, W. (2006), "Optimum properties of multiple tuned mass dampers for reduction of translational and torsional response of structures subject to ground acceleration", Eng. Struct., 28(4), 472-494. https://doi.org/10.1016/j.engstruct.2005.09.003.   DOI
23 Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3.   DOI
24 Mirjalili, S., Gandomi, A.H., Mirjalili S.Z., Saremi S., Faris H. and Mirjalili, S.M. (2017), "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Advan. Eng. Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002.   DOI
25 Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Advan. Eng. Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.   DOI
26 Raeesi, F., Azar, B.F., Veladi, H. and Talatahari, S. (2020), "An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm", Struct., 26, 406-416. https://doi.org/10.1016/j.istruc.2020.04.026.   DOI
27 Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4.   DOI
28 Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Stuct. Dyn., 26(6), 617-636. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z.   DOI
29 Salvi, J. and Rizzi, E. (2015), "Optimum tuning of Tuned Mass Dampers for frame structures under earthquake excitation", Struct. Control Health Monit., 22(4), 707-725. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1710.   DOI
30 Salvi, J. and Rizzi, E. (2017), "Optimum earthquake-tuned TMDs: Seismic performance and new design concept of balance of split effective modal masses", Soil Dyn. Earthq. Eng., 101, 67-80. https://www.sciencedirect.com/science/article/pii/S0267726117302154.   DOI
31 Shan, X., Liu, K. and Sun, P.L. (2016), "Modified bat algorithm based on levy flight and opposition based learning", Sci. Programming. 2016. https://doi.org/10.1155/2016/8031560.
32 Sapre, S. and Mini, S. (2019), "Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization", Soft Comput., 23, 6023-6041. https://doi.org/10.1007/s00500-018-3586-y.   DOI
33 Sarkhel, R., Chowdhury, T.M., Das, M. and Nasipuri M. (2017), "A novel harmony search algorithm embedded with metaheuristic opposition based learning", J. Intel. Fuzzy Syst., 32(4), 3189-3199. https://doi.org/10.3233/JIFS-169262.   DOI
34 Setareh, M. (1994), "Use of the doubly-tuned mass dampers for passive vibration control", The Proceedings of the First World Conference on Structural Control.
35 Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control, 21(5), 919-937. https://doi.org/10.1177/1077546313478294.   DOI
36 Shirgir, S., Azar B.F. and Hadidi A. (2020), "Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model", Earthq. Struct., 18(4), 493. https://doi.org/10.12989/eas.2020.18.4.493.   DOI
37 Tizhoosh, H.R. (2005), "Opposition-based learning: a new scheme for machine intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). IEEE, 695-701. https://doi.org/10.1109/CIMCA.2005.1631345.
38 Warburton, G. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.   DOI
39 Younespour, A. and Ghaffarzadeh H. (2015), "Structural active vibration control using active mass damper by block pulse functions", J. Vib. Control, 21(14), 2787-2795. https://journals.sagepub.com/doi/abs/10.1177/1077546313519285.   DOI
40 Xu, K. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng, Struct. Dyn., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203.   DOI
41 Zhou, Y., Hao, J.K and Duval, B. (2017), "Opposition-based memetic search for the maximum diversity problem", IEEE Trans. Evolu. Comput., 21(5), 731-745. https://doi.org/10.1109/TEVC.2017.2674800.   DOI