• Title/Summary/Keyword: Compact conductor

Search Result 27, Processing Time 0.026 seconds

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Compact Folded Monopole Antenna Excited by a Conductor-Backed Coplanar Waveguide with Vias

  • Kim, Jin Hyuk;Hwang, Keum Cheol
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.534-537
    • /
    • 2013
  • A compact monopole antenna excited by a conductor-backed coplanar waveguide (CBCPW) is developed for wireless USB dongle applications. The proposed antenna has a compact dimension of $14mm{\times}47.4mm{\times}3.5mm$, which is suitable for a USB dongle housing. A slotted elliptical patch and a CBCPW with vertical vias are employed to achieve a further size reduction and an improved impedance bandwidth. The measurement result demonstrates that the fabricated antenna resonates from 2.25 GHz to 10.9 GHz, which covers all of the important wireless communication bands, including WiBro (2.3 GHz to 2.4 GHz), Bluetooth (2.4 GHz to 2.484 GHz), WiMAX (2.5 GHz to 2.7 GHz and 3.4 GHz to 3.6 GHz), satellite DMB (2.605 GHz to 2.655 GHz), 802.11b/g/a WLAN (2.4 GHz to 2.485 GHz and 5.15 GHz to 5.825 GHz), and ultra-wideband (3.1 GHz to 10.6 GHz) services. The radiation characteristics of the proposed antenna when attached to a laptop are tested to investigate the influence of the keypad and the LCD panel of the laptop.

Design of Compact Dual-band Slot Antenna (소형 이중 대역 슬롯 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.61-62
    • /
    • 2015
  • In this paper, a design method for a dual-band compact slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside of a rectangular slot of the proposed antenna for dual-band operation. Final design parameters are obtained by analyzing the effects of the gap between the SRR conductor and slot, and the width of the SRR conductor on the input reflection coefficient and gain characteristics. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is designed on an FR4 substrate with a dimension of 30 mm by 30 mm.

  • PDF

Study on Salt-Proof Characteristics of Copper Clad Aluminum (동복알루미늄의 내염특성 연구)

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1764-1768
    • /
    • 2009
  • As the demand of electric power is increasing rapidly, the need of the compact and light electric power device is also increased. Copper clad aluminum (CCA) is newly proposed electrical conductor, because of its light-weight and low-cost characteristics, to replace the existing conductor made of copper. This paper presents the salt-proof characteristics of the copper clad aluminum (CCA) to certificate long time safe operation of the newly proposed electrical conductor. The two types of the CCA conductor were tested in the neutral salt spray tester. The experimental results of two types of the CCA with salt spray were presented in this paper. The results comprise resistance measured data, micro picture of the selected surface, and component measured data according to the elapsed time. The period of the experiment was 1,000 hours. There was no evidence to show the corrosion of CCA during the whole period of the experiments.

Test result of striated HTS compact cables for low AC loss

  • Kim, Y.;Kim, W.S.;Lee, J.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.44-47
    • /
    • 2013
  • Large AC loss from the second generation (2G) high temperature superconducting (HTS) wires has been one of the major bottlenecks in power applications with HTS materials. Moreover, the large power applications also require the large current capacity from the HTS wires, which makes them produce larger AC losses. In order to reduce the AC loss from the HTS conductors with large current capacity, an HTS compact cable with some striations on the superconducting layers has been proposed. In this paper, we prepared some sample HTS compact conductors with striations, and measured their magnetization loss from the external magnetic field. We also made some slits on the superconducting layer of the HTS wire by laser cutting to reduce the aspect ratio of the superconducting layers. It would make the low eddy current loss and magnetic decoupling. Finally, the magnetization losses of the sample HTS compact conductors were measured and analyzed.

Fabrication and Test of a Superconducting Coil for SMES (SMES용 초전도코일 제작 및 특성)

  • 김해종;성기철;조전욱;배준한;김석환;심기덕;이언용;권영길;류경우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.557-562
    • /
    • 2003
  • To develop a stable and compact small-sized superconducting magnetic energy storage (SMES) system, which provides electric power with high quality to sensitive electric loads, we fabricated a SMES coil and tested it. Because such a large-sized superconducting coil quenches far away from its critical current, the recovery current is frequently used as a stability criterion in the coil fabrication. Therefore, we first investigated the recovery current characteristics of the large current conductor, which was used in our SMES coil fabrication. The test results indicate that the recovery currents measured in the conductor are nearly identical to those based on the single wire. This implies that the recovery current is affected by the conductor's cooling condition rather than its size and current capacity. In the SMES coil test the first quench occurred at 1250 A, which is equivalent to the stored energy of about 2 MJ. It corresponds to the quench current density of about $130A/mm^2$ This value is much higher in comparison with that reported in the other work. In addition, the first quench current of the coil agrees well with the measured recovery current of the conductor having similar cooling condition with it. This means that to determine the recovery current of a conductor is, first of all, important in the design and fabrication of a large-sized superconducting coil.

Compact Dual-band CPW-fed Slot Antenna Using Split-Ring Resonator (분할 링 공진기를 이용한 소형 이중 대역 CPW-급전 슬롯 안테나)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2526-2533
    • /
    • 2015
  • In this paper, a design method for a compact dual-band coplanar waveguide-fed slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside a rectangular slot of the proposed antenna for dual-band operation. When the SRR conductor is inserted into the slot, the original rectangular slot is divided into a rectangular loop region and a rectangular slot region, and frequency bands are created by the loop and slot, separately. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.38-2.51 GHz and 3.32-5.38 GHz for a voltage standing wave < 2, and measured gain is 1.7 dBi at 2.45 GHz, and it ranges 2.4-3.2 dBi in the second band.

Influence of end-joint methods on magnetization loss in striated helical conductors

  • Kim, Woo-Seok;Kim, Yungil;Choi, Kyeongdal;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2013
  • To reduce the magnetization loss of a coated conductor, the striation and the transposition have to be accomplished for magnetic decoupling. The loss reduction effect in incomplete as well as complete striated YBCO CCs was reported in previous research. At the case of the incomplete striated sample, the end region of the sample is non-striated. So, it is not jointed with each other. In power applications, the joint is needed because current leads must be connected with HTS coils. In this research, the influence of end-joint methods with copper and superconducting joint on magnetization loss in striated YBCO CC and spiral winding samples are presented and compared with non-striated measured result.

Three-dimensional Analysis for Three-phase Spacers in Gas Insulated System (3차원 전계해석 기법을 이용한 GIS 삼상 일괄형 스페이서 고찰)

  • Kang, J.S.;Lee, B.W.;Kang, S.M.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1620-1622
    • /
    • 2003
  • Recently, as the technology for the development of high voltage power apparatus using SF6 gas has made remarkable progress, it became possible to develop more compact power apparatus adopting single body substation system. In these gas insulated power apparatus, it is impossible to achieve perfect and safe insulation using only SF6 gas, because some solid insulation parts should be installed to support current-carrying conductor parts for electrical and mechanical safety. When spacers were installed in SF6 gas insulation system, they were exposed to severe electrical intensification which could reduce system insulation performance and restrict the rated operating voltage So, it is necessary to clarify the dielectric characteristics of spacers by analytically and experimentally, in order to design and develop more compact and optimum gas insulated systems. In this paper, the field distribution of three-phase spacers were investigated using three dimensional electrostatic field analysis tool adopting BEM method. And the obtained results were compared to the conventional two dimensional computations. According to these three dimensional calculations, it was possible to find out weak points in the spacer more clearly and these results could be applied to design more compact and optimum three phase spacer developments.

  • PDF

Behaviors of turn-to-turn contact resistance (Rc) of various REBCO CC tapes according to applied contact pressure

  • Jeong, Chanhun;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • No-insulation (NI) pancake magnets are fabricated using Rare earth-Barium-Copper Oxide (REBCO) coated conductor (CC) tapes, which enabled a very compact magnet in the aspects of high critical current density ($J_c$) and high mechanical strength by removing insulation and allowing thinner stabilizer. They have also advantages such as self-quench protection. Therefore, it does not need quench detection and protection that can be very challenging in a high critical temperature ($T_c$) superconducting magnet technology. Recently, it was reported that the NI REBCO CC magnets have some drawbacks of long charging time and high field ramp loss which will be a concern in the operation of cryocooled magnets. These issues are related to the turn-to-turn contact resistivity and can be released by managing it. This is also closely related to the activity of reducing the contact joint resistance in the case of CC joints for long length CC fabrication. Therefore, in this study, the turn-to-turn contact resistance ($R_c$) at the CC contact part of differently stabilized CC tapes was measured. The behaviors of $R_c$ at CC contact parts according to the applied contact pressure were investigated. The range of $R_c$ measured for CC tapes adopted will provide fundamental data for design and fabrication of the CC NI coils.