• Title/Summary/Keyword: Communication coverage

Search Result 577, Processing Time 0.029 seconds

해양통신에서 uplink coverage 확장을 위한 relay 송수신 기법연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.77-78
    • /
    • 2022
  • Currently, communication at sea is more difficult than communication at inland due to the movement of route signs by waves. This paper conducts research on relay transmission and reception techniques to extend coverage in uplink situations. The uplink maritime communication environment between inland base stations and buoys located a certain distance inland was viewed as two hops, and a beam generated according to the number of antennas was selected and a performance analysis was conducted considering the movement of buoys measured by sensors.

  • PDF

Study of Coverage Implementation Using Lenticular Sticker (렌티큘러 스티커를 이용한 커버리지 구현 연구)

  • Jeong, Seung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.573-578
    • /
    • 2019
  • Recently, the development of indoor positioning technology, base station positioning, Wi - Fi positioning, and Bluetooth beacon positioning technology have been introduced in buildings and underground space. This paper introduces a technique that enables user-oriented ultra-high precision positioning by adopting a lenticular positioning technology, which is a method in which a user directly locates a user's moving line based on a provider-oriented positioning system and service. Through the study on the implementation of coverage using lenticular stickers, we will discuss how to implement coverage of lenticular stickers, which is one of the most important parts of lenticular positioning technology.

Coverage Analysis of VHF Aviation Communication Network for Initial UAM Operations Considering Real Terrain Environments (실제 지형 환경을 고려한 초기 UAM 운용을 위한 VHF 항공통신 커버리지 분석)

  • Seul-Ae Gwon;Seung-Kyu Han;Young-Ho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2024
  • In the initial stages of urban air mobility (UAM) operations, compliance with existing visual flight rules and instrument flight regulations for conventional human-crewed aircraft is crucial. Additionally, voice communication between the on board pilot and relevant UAM stakeholders, including vertiports, is essential. Consequently, very high frequency (VHF) aviation voice communication must be consistently provided throughout all phases of UAM operations. This paper presents the results of the VHF communication coverage analysis for the initial UAM demonstration areas, encompassing the Hangang River and Incheon Ara-Canal corridors, as well as potential vertiport candidate locations. By considering the influence of terrain and buildings through the utilization of a digital surface model (DSM), communication quality prediction results are obtained for the analysis areas. The three-dimensional coverage analysis results indicate that stable coverage can be achieved within altitude corridors ranging from 300 m to 600 m. However, there are shaded areas in the low-altitude vertiport regions due to the impact of high-rise buildings. Therefore, additional research to ensure stable coverage around vertiports in the lower altitude areas is required.

Reducing Test Power and Improving Test Effectiveness for Logic BIST

  • Wang, Weizheng;Cai, Shuo;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.640-648
    • /
    • 2014
  • Excessive power dissipation is one of the major issues in the testing of VLSI systems. Many techniques are proposed for scan test, but there are not so many for logic BIST because of its unmanageable randomness. This paper presents a novel low switching activity BIST scheme that reduces toggle frequency in the majority of scan chain inputs while allowing a small portion of scan chains to receive pseudorandom test data. Reducing toggle frequency in the scan chain inputs can reduce test power but may result in fault coverage loss. Allowing a small portion of scan chains to receive pseudorandom test data can make better uniform distribution of 0 and 1 and improve test effectiveness significantly. When compared with existing methods, experimental results on larger benchmark circuits of ISCAS'89 show that the proposed strategy can not only reduce significantly switching activity in circuits under test but also achieve high fault coverage.

Radio Coverage Prediction of DMO Terminal in TETRA TRS (TETRA TRS에서 DMO 단말기의 전파도달범위 예측)

  • Lee, Soon-Hwa;Kim, Chang-Bock
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • TETRA(TErrestrial Trunked RAdio) provide specialized disaster radio communication services as a standard European for digital TRS(Trunked Radio System). Especially, DMO(Direct Mode Operation) feature is used effectively in the radio shadow areas which base station does not propagate radio signal because it can communicate directly with terminal to terminal without base station's relay function. However, to effectively used DMO feature, radio coverage prediction information should be provided to users. Therefore in this paper, we were calculated link budget of TETRA DMO terminals which were distributing and operating in the country and then predicted reaching distance about radio propagation to be applied with path loss model.

A Novel Power-Efficient BS Operation Scheme for Green Heterogeneous Cellular Networks

  • Kim, Jun Yeop;Kim, Junsu;Kang, Chang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1721-1735
    • /
    • 2016
  • Power-efficient base station (BS) operation is one of the important issues in future green cellular networks. Previously well-known BS operation schemes, the cell zooming scheme and the cell wilting and blossoming scheme, require tight cooperation between cells in cellular networks. With the previous schemes, the non-cooperative BSs of a serving cell and neighboring cells could cause coverage holes between the cells, thereby seriously degrading the quality of service as well as the power saving efficiency of the cellular networks. In this paper, we propose a novel power-efficient BS operation scheme for green downlink heterogeneous cellular networks, in which the networks virtually adjust the coverage of a serving macrocell (SM) and neighboring macrocells (NMs) without adjusting the transmission power of the BSs when the SM is lightly loaded, and the networks turn off the BS of the SM when none of active users are associated with the SM. Simulation results show that our proposed scheme significantly improves the power saving efficiency without degrading the quality of service (e.g., system throughput) of a downlink heterogeneous LTE network and outperforms the previous schemes in terms of system throughput and power saving efficiency. In particular, with the proposed scheme, macrocells are able to operate independently without the cooperation of a SM and NMs for green heterogeneous cellular networks.

Slotted ALOHA Random Access with Multiple Coverage Classes for IoT Applications (사물인터넷 응용을 위한 다중 커버리지 클래스를 지원하는 슬롯화된 알로하 랜덤 접속)

  • Kim, Sujin;Chae, Seungyeob;Cho, Sangjin;Rim, Minjoong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.554-561
    • /
    • 2017
  • IoT (Internet of Things) devices are often located in environments where indoor or underground, signals are difficult to reach. In addition, the transmission power is low, the base station should be designed to be able to receive signals even at low reception sensitivity. For this reason, a device having a poor channel condition can be transmitted at a low data rate using a low coding rate or repetition. When the coverage class is divided according to the channel condition and the data rate, the packet length may vary from one coverage class to another, and the performance of the slotted aloha random access may be degraded. We will focus on two methods of using shared-resource and seperate resources among multiple slotted aloha methods. In particular, when devices with different coverage classes use shared resources, performance of a device with a bad channel condition may deteriorate. Conversely, when using separate resources for each coverage class, there is a problem that congestion may occur which increases the number of devices that perform random access to one resource area. In this paper, we propose some methods to overcome this problem. This study is mainly focused on MTC devices, and is considered to be a high possibility of future development.

Location Information System based on LoRa(Long Range) and IPv6 (LoRa(Long Range)와 IPv6 기반의 위치정보시스템)

  • Choi, Min-Cheol;Jeong, Jaeho;Kim, Hong-Joon;Lee, Bo-Kyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • As the IoT industry expands, various application services based on location information of devices are released. In order to transmit the location information, various wireless communication technologies such as Bluetooth and Wi-Fi are used. However, these technologies have limited coverage, and cellular networks with relatively wide coverage have the disadvantage of paying for use. In this paper, we implemented our own location information system using LoRa, a low power long distance wireless communication technology. As a result, no cost is incurred and it has relatively wider coverage than other wireless communication technologies using LoRa technology. The implementation system enables LoRa communication based on IPv6 using CoAP and 6LoWPAN, and enables multiple devices to interwork with the existing Internet environment.

A Design and Implementation of Range Adaptive Time Synchronization on USV Maritime Wireless Communication (무인수상정 해상무선통신 거리 적응적 동기화 설계 및 구현)

  • Park, Hyunsung;Kim, Taehyeon;Gwak, Sangyell;Noh, Wooyoung;Oh, Jimyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.640-648
    • /
    • 2018
  • Time division wireless communication in tactical MANET is attractive to deliver both high data rates and long-range coverage, and to provide scheduled QoS to mission participants. This paper is about the time synchronization issue of multi-mission USV in tactical MANET. As USV communication coverage becomes longer, the synchronization error also becomes higher; therefore, which results in link disconnection, and consequent failures of reconnection because base station cannot configure necessary parameters over long-distant terminal. We propose a range adaptive time synchronization method to compensate for synchronization errors. The issue of long-range time synchronization problem was identified during maritime communication tests, and we verified the proposed method through analyses of both indoor and outdoor test results.

Study on the Coverage by COMS OCI FOV

  • Kang C. H.;Seo S. B.;Lim H. S.;Park D. J.;Ahn S. I.;Koo I. H.;Hyun D. H.;Yang H. M.;Choi H. J.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.336-339
    • /
    • 2004
  • Communication, Ocean and Meteorological Satellite (COMS) has been developed by Korean Aerospace Research Institute (KARI) since 2003. Ocean Color Imager (OCI) is the one of COMS payloads, which will monitor the marine environment around Korean peninsula routinely with the intermediate resolution. But considering COMS is to be located in the geostationary orbit, required geographical coverage is not positioned in the nadir direction of COMS but in specific location with horizontal and vertical offsets from the nadir. In this study, coverage by OCI Field Of View (FOV) is analyzed. First of all, OCI is modeled as the sensor which is a $2,500{\times}2,500$ sized 2-D CCD and the pixel resolution is about 500m. And then, OCI is simulated to be controlled to target the required coverage accurately. As a result of it, coverage by OCI FOV is determined. Finally, all coverages by OCI FOV are mapped.

  • PDF