DOI QR코드

DOI QR Code

Slotted ALOHA Random Access with Multiple Coverage Classes for IoT Applications

사물인터넷 응용을 위한 다중 커버리지 클래스를 지원하는 슬롯화된 알로하 랜덤 접속

  • Kim, Sujin (Dongguk University Information and Communication Engineering) ;
  • Chae, Seungyeob (Dongguk University Information and Communication Engineering) ;
  • Cho, Sangjin (Dongguk University Information and Communication Engineering) ;
  • Rim, Minjoong (Dongguk University Information and Communication Engineering)
  • Received : 2016.11.25
  • Accepted : 2017.01.31
  • Published : 2017.03.31

Abstract

IoT (Internet of Things) devices are often located in environments where indoor or underground, signals are difficult to reach. In addition, the transmission power is low, the base station should be designed to be able to receive signals even at low reception sensitivity. For this reason, a device having a poor channel condition can be transmitted at a low data rate using a low coding rate or repetition. When the coverage class is divided according to the channel condition and the data rate, the packet length may vary from one coverage class to another, and the performance of the slotted aloha random access may be degraded. We will focus on two methods of using shared-resource and seperate resources among multiple slotted aloha methods. In particular, when devices with different coverage classes use shared resources, performance of a device with a bad channel condition may deteriorate. Conversely, when using separate resources for each coverage class, there is a problem that congestion may occur which increases the number of devices that perform random access to one resource area. In this paper, we propose some methods to overcome this problem. This study is mainly focused on MTC devices, and is considered to be a high possibility of future development.

IoT(Internet of Things) 응용 디바이스는 실내, 지하 등의 신호가 도달하기 어려운 환경에 있는 경우가 많을 뿐만 아니라 송신 출력도 낮으므로 기지국이 낮은 수신 감도에서도 수신이 가능하도록 설계되어야 한다. 이를 위해 채널 상태가 좋지 않은 디바이스는 낮은 부호화율이나 반복전송 등을 이용하여 낮은 데이터 전송률로 전송할 수 있다. 채널 상태에 따라 커버리지 클래스를 나누고 채널 상태에 맞는 전송 속도를 사용할 때 커버리지 클래스마다 패킷의 길이가 다를 수 있으며 슬롯 알로하 랜덤 접속의 성능이 떨어질 수 있다. 특히 서로 다른 커버리지 클래스의 디바이스들이 공유된 자원을 사용할 때는 채널 상태가 나쁜 디바이스의 성능이 떨어질 수 있으며, 반대로 커버리지 클래스마다 분리된 자원을 사용할 때는 한 자원 영역에 랜덤 액세스를 하는 디바이스가 많아지는 혼잡이 발생할 수 있다는 문제가 있다. 본 논문에서는 이를 보완할 수 있는 방법들을 제안한다. 이 연구는 MTC 디바이스를 중심으로 연구하였으며, 추후 발전 가능성이 높은 부분이라 생각된다.

Keywords

References

  1. O. Park, H. Hwang, C. Lee, and J. Shin, "Trends of 5G Massive IoT," Electron. and Telecommun. Trends., vol. 31, no. 1, pp. 68-77, Feb. 2016.
  2. S. Seo, E. Shin, and K. Jo, "Trends of NB-IoT," Electron. and Telecommun. Trends., vol. 31, no. 5, pp. 11-20, Oct. 2016.
  3. K. Zheng, S. Ou, J. Alonso-Zarate, M. Dohler, F. Liu, and H. Zhu, "Challenges of massive access in highly dense LTE-Advanced networks with machine-to-machine communications," IEEE Wirel. Commun., vol. 21, no. 3, pp. 12-18, Jun. 2014. https://doi.org/10.1109/MWC.2014.6845044
  4. M. Hasan, E. Hossain, and D. Niyato, "Random access for machine-to-machine communication in LTE-Advanced networks: Issues and approaches," IEEE Commun. Mag., vol. 51, no. 6, pp. 86-93, Jun. 2013. https://doi.org/10.1109/MCOM.2013.6525600
  5. M. T. Islam, A. M. Haha, and S. Akl, "A survey of access management techniques in machine type communications," IEEE Commun. Mag., vol. 52, no. 4, pp. 74-81, Mar. 2014. https://doi.org/10.1109/MCOM.2014.6807949
  6. A. Laya, L. Alonso, and J. Alonso-Zarate, "Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives," IEEE Commun. Surveys & Tuts., vol. 16, no. 1, pp. 4-16, First Quarter 2014. https://doi.org/10.1109/SURV.2013.111313.00244
  7. R. Ratasuk, A. Prasad, Z. Li, A. Ghosh, and M. Uusitalo, "Recent advancements in M2M communications in 4G networks and evolution towards 5G," ICIN, pp. 52-57, 2015.
  8. S. Chae, S. Cho, S. Kim, M. Rim, and C. Kang, "Slotted aloha for massive connectivity in IoT," in Proc. KICS ICC 2015, pp. 535-536, Seoul, Korea, Nov. 2015.
  9. S. Kim, S. Kim, H. Han, M. Rim, and C. Kang, "Handling congestion in cellular IoT systems for massive conncectivity," in Proc. KICS ICC 2016, pp. 85-86, Jeongseon, Korea, Jan. 2016.
  10. S. Cho, S. Chae, S. Kim, M. Rim, and C. Kang, "Collision reduction of cell-edge devices in cellular IoT systems," in Proc. KICS ICC 2016, pp. 261-262, Jeongseon, Korea, Jan. 2016.
  11. S. Chae, S. Kim, S. Cho, M. Rim, and C. Kang, "Orthogonal data repetition patterns for massive connectivity," ICTC, Oct. 2016.
  12. S. Chae, S. Cho, S. Kim, and M. Rim, "Coded random access with multiple coverage classes for massive machine type communication," ICTC, Oct. 2016.
  13. L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang, "Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends," IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, Sept. 2015. https://doi.org/10.1109/MCOM.2015.7263349
  14. N. Zhang, J. Wang, G. Kang, and Y. Liu, "Uplink nonorthogonal multiple access in 5G systems," IEEE Commun. Lett., vol. 20, no. 3, pp. 458-461, Mar. 2016. https://doi.org/10.1109/LCOMM.2016.2521374
  15. R1-163510: Qualcomm Incorporated, Candidate NR Multiple Access Schemes, 3GPP TSG RAN WG1 Meeting #84bis, Apr. 2016.
  16. R1-162385: Intel Corporation, Multiple Access Schemes for New Radio Interface, 3GPP TSG RAN WG1 Meeting #84bis, Apr. 2016.
  17. R1-162517: LG Electronics, Considerations on DL/UL Multiple Access for NR, 3GPP TSG RAN WG1 Meeting #84bis, Apr. 2016.
  18. S. Chae, S. Cho, S. Kim, M. Rim, and C. Kang, "Orthogonal channelization in non-orthogonal multiple access for massive connectivity," in Proc. KICS ICC 2016, pp. 146-147, Seoul, Korea, Nov. 2016.
  19. S. Cho, S. Chae, S. Kim, S. Kim, and M. Rim, "Inter-cell interference control in uplink non-orthogonal multiple access," in Proc. KICS ICC 2016, pp. 138-139, Seoul, Korea, Nov. 2016.
  20. S. Kim, S. Kim, S. Cho, S. Chae, and M. Rim, "On the channel estimation in uplink non-orthogonal multiple access," in Proc. KICS ICC 2016, pp. 394-395, Seoul, Korea, Nov. 2016.