• 제목/요약/키워드: Commercial Optimization Software

검색결과 148건 처리시간 0.031초

캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용 (Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life)

  • 곽병만;유용균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발 (Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices)

  • 김민호;변진규
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

유한요소해석에 의한 Knuckle의 최적형상설계에 관한 연구 (A Study on the Shape Optimization Design of the Knuckle by the Finite Element Analysis)

  • 나완용;이승호;오상기
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.53-57
    • /
    • 2008
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. It is required more precise analysis for practical load because of complexities and varieties of vehicle structure. In this study, the shape optimization using a FEA is performed to determine the design of the knuckle. The size optimization is carried out to find thickness while the stiffness constraints are satisfied. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

  • PDF

구조최적설계 소프트웨어의 성능 비교에 대한 기초연구 (Basic Study on Performance Comparison of Structural Optimization Software Systems)

  • 최욱한;황성국;박경진;김태경
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1403-1413
    • /
    • 2014
  • 구조최적설계는 구조물의 성능 개선을 추구하며, 항공 및 자동차의 설계 등에서 사용된다. 최근에는 구조최적설계를 위한 상용 소프트웨어들이 잘 개발되어 있기 때문에 산업 분야에서 쓰임이 활발해지는 추세이다. 본 연구에서는 구조최적설계 상용 소프트웨어 중에서 많이 사용되는 Genesis, MSC. Nastran과 OptiStruct에 대해 성능 비교 연구를 수행한다. 최적설계의 관점에서 소프트웨어 성능은 설계결과의 우수성과 수행에 소요된 CPU 시간으로 평가할 수 있다. 치수최적설계, 형상최적설계와 위상최적설계에 대하여, 구조 예제들을 풀이한다. 공정한 비교를 위하여 구조최적설계의 수행 환경과 방법은 동일하게 통일한다. 또한 최적설계 결과를 분석하고 각 소프트웨어의 성능과 특징에 대해 토의한다.

동력전달 시스템의 최적화를 위한 축 해석 모델 개발 (Development of Shaft Analysis Model for Power Transmission System Optimization)

  • 이주연;김수철
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.8-16
    • /
    • 2021
  • This study develops a shaft analysis model for the optimization of the power transmission system. The finite element method was used for the shaft analysis model. The shaft and gear were assumed Timoshenko beams. Strength was evaluated according to DIN 743, and gear misalignment was calculated through ISO 6336 and the coordinate system rotation. The analysis software for a power transmission system was developed using Visual Studio 2019. The analysis results of the developed program were compared with those of commercial software (MASTA, KISSsoft, and Romax). We confirmed that the force, deformation, and safety factors at each node were the same as those of the commercial software. The absolute value of the gear misalignment of the developed program and commercial software was different. However, the gear misalignment tended to increase with increasing the displacement in the tooth width direction.

Shape Optimization to Minimize The Response Time of Direct-acting Solenoid Valve

  • Shin, Yujeong;Lee, Seunghwan;Choi, Changhwan;Kim, Jinho
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.193-200
    • /
    • 2015
  • Direct-acting solenoid valves are used in the automotive industry due to their simple structure and quick response in controlling the flow of fluid. We performed an optimization study of response time in order to improve the dynamic performance of a direct-acting solenoid valve. For the optimal design process, we used the commercial optimization software PIAnO, which provides various tools for efficient optimization including design of experiments (DOE), approximation techniques, and a design optimization algorithm. 35 sampling points of computational experiments are performed to find the optimum values of the design variables. In all cases, ANSYS Maxwell electromagnetic analysis software was used to model the electromagnetic dynamics. An approximate model generated from the electromagnetic analysis was estimated and used for the optimization. The best optimization model was selected using the verified approximation model called the Kriging model, and an optimization algorithm called the progressive quadratic response surface method (PQRSM).

설계변수 공차를 고려한 브러시리스 모터 출력밀도 최적설계 (Optimum Design of the Brushless Motor Considering Parameter Tolerance)

  • 손병욱;이주
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1600-1604
    • /
    • 2010
  • This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.

동적 거동 시뮬레이션을 위한 종이의 물성치 추정 (Material Property Estimation of Paper for Dynamic Behavior Simulation)

  • 이근표;최진환;이순걸
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.

멀티미디어 대응 상용 PIV의 국산화개발에 관한 연구 (A Study on Development of Commercial PIV Utilizing Multimedia)

  • 최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.652-659
    • /
    • 1998
  • The present study is aimed to develop a new PIV operating software through optimization of vector tracking identification including versatile pre-processings and post-processing techniques. And the result exhibits an improved version corresponding various input and output multimedia compared to previous commercial software developed by other makers. An upgraded identification method called grey-level cross correlation coefficient method by direct calculation is suggested and related user-friendly pop-up menu are also represented. Post-processings comprising turbulence statistics are also introduced with graphic output functions.

  • PDF

상용 해석 소프트웨어를 이용한 접촉문제의 효과적 해석 및 최적 지지점 설계 (A Study on efficient contact analysis and optimum support design using commercial analysis software)

  • 최주호;원준호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.437-444
    • /
    • 2004
  • In this study, an optimum support design problem is considered to minimize displacement of stacked plates under self weight condition. During the displacement analysis, several kinds of contact arise between the plates themselves and support bar. These can be easily considered if commercial analysis software, which provides capability to solve the contact problem, is used. It is found, however, that the computing time is extraordinarily long due possibly to the generality of the software and also to the ignorance of the control parameters used in the software. In this paper, the contact condition is imposed directly by the authors, while the software is used only to solve the ordinary displacement analysis problem. In this way, the computing time is decreased remarkably by more than 30 times, while yielding the same accurate results. Optimization is conducted based on this efficient analysis method to find minimum number of supporting bars using the response surface algorithm.

  • PDF