This paper aims to examine the third-person effect(TPE) of hate comments on online news, and analyze how the issue-relevant audience factors as well as the characteristics of the online message have influence on the TPE. More specifically, based on the distinction between hateful and logical comments regarding the issue of illegal immigration, the authors have conducted an online experiment that compares how the message-related features, i.e., ways of expressing the ideas, lead to the difference in TPE. Analysis was also conducted with regards to how political orientation and discriminatory predisposition to immigrants among the audiences, have different impacts on the TPE. The 479 participants in the experiments were randomly assigned to experimental group(exposed to hate comments) or control group(exposed to logical comments). The results reveal that the TPE of hate comments is higher than that of logical message. The same message proved to be more effective for news users with liberal orientation and discriminatory predisposition. The significance of this paper lies in that it has examined the effect of online hate comments in a rigorous experimental setting. Also the research further elaborated on the audience-related variables, for which the previous studies tended to focus those on the general psychological level rather than relate them more specifically to the issues.
This research investigates how users of Bilibili, a video sharing website based in China have responded to carbon neutrality. By conducting quantitative textual analyses on 3,311 comments on Bilibili using LDA topic extraction and content statistics, this research discovers that: (1) Bilibili users have assigned more weight to geopolitical topics (56.3%) than energy (22.0%) and environmental topics (21.7%). (2) When assessing carbon neutrality, Bilibili users considered geopolitical (53.8%) and energy factors (15.8%) more heavily than factors related to the class (9.2%), economy (8.9%), environment (8.7%), and definition (3.6%). (3) More Bilibili users had negative (64.6%) attitudes towards carbon neutrality, with only a small portion of them expressing positive (26.8%) and neutral (8.6%) attitudes. (4) Negative attitudes towards carbon neutrality were mainly driven by geopolitical concerns about the West's approach to China, other countries' free-riding on China's efforts and the West's manipulation of rules, doubts about the feasibility of energy transition and suspicion of capitalists exploiting consumers through this concept. This research highlights the geopolitical concerns behind the environmental attitudes of Chinese people, deepening our understanding to psychological constructs and crisis sensitivity of Chinese people towards environmental issues.
Journal of Korean Society of Industrial and Systems Engineering
/
v.41
no.1
/
pp.1-10
/
2018
Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.
Korea, which is expected to enter a super-aged society in 2025, is facing the most worrisome crisis worldwide. Efforts are urgently required to examine problems and countermeasures from various angles and to improve the shortcomings. In this regard, from a new viewpoint, we intend to derive useful implications by applying the recent natural language processing techniques to online articles. More specifically, we derive three research questions: First, what topics are being reported in the online media and what is the public's response to them? Second, what is the relationship between these aging-related topics and individual happiness factors? Third, what are the strategic directions and implications for benchmarking discussed to solve the problem of population aging? To find answers to these, we collect Naver portal articles related to population aging and their classification categories, comments, and number of comments, including other numerical data. From the data, we firstly derive 33 topics with a semi-supervised BERTopic by reflecting article classification information that was not used in previous studies, conducting sentiment analysis of comments on them with a current open-source large language model. We also examine the relationship between the derived topics and personal happiness factors extended to Alderfer's ERG dimension, carrying out additional 3~4-gram keyword frequency analysis, trend analysis, text network analysis based on 3~4-gram keywords, etc. Through this multifaceted approach, we present diverse fresh insights from practical and theoretical perspectives.
There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.
Due to the advancement of virtual reality technology, virtual idols are widely used in industrial and cultural content industries. However, it is difficult to utilize virtual idols' social perceptions because they are not properly understood. Therefore, this paper collected and analyzed YouTube comments to identify differences about social perception through comparative analysis between virtual idols and general idols. The dataset was constructed by crawling comments from music videos with more than 10 million views of virtual idols and more than 10,000 comments. Keyword frequency and TF-IDF values were derived from the collected dataset, and the connection centrality CONCOR cluster was analyzed with a semantic network using the UCINET program. As a result of the analysis, it was found that virtual idols frequently used keywords such as "person," "quality," "character," "reality," "animation," while reactions and perceptions were derived from general idols. Based on the results of this analysis, it was found that while general idols are mainly evaluated with their appearance and cultural factors, social perceptions of virtual idols' values are mixed with evaluations of cultural factors such as "song," "voice," and "choreography," focusing on technical factors such as "people," "quality," "character," and "animation." However, keywords such as "song," "voice," "choreography," and "music" are included in the top 30 like regular idols and appear in the same cluster, suggesting that virtual idols are gradually shifting away from minority tastes to mainstream culture. This study aims to provide academic and practical implications for the future expansion of the industry and cultural content industry of virtual idols by grasping the social perception of virtual idols.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.7
/
pp.92-101
/
2017
The SNS website can take full advantage of the characteristics of users to conduct e-commerce. The e-commerce website's organizing ability will be greatly strengthened by SNS and creates greater value for consumers. This article examined the Chinese largest SNS (Weibo) users as research objects, and combined the development status of SNS in China. This article focuses on the influence to consumer's purchase intention in three aspects: number of comments, consumer involvement level, and consumer appealing method and examines how the interaction of the number of comments and consumer appealing method affects the purchase intention. An investigation was conducted on 400 users of SNS and using valid questionnaires to perform reliability analysis, validity analysis, independent sample t-test, and double factor variance analysis using SPSS21. The research results indicated that the number of comments and rational appealing method had significant effect on the purchase intention. The mediating or controlling the purchase involvement level will disturb the influence of the number of comments but will have no effect on the information appealing method.
Recently, as famous YouTubers produce and broadcast videos that receive sponsorship and advertising such as indirect advertising (PPL), a so-called 'back advertising' controversy continues, and not only famous YouTubers but also entertainers are caught up in the issue. It is causing confusion among the public in Korea. This study attempts to find out the public's reaction before and after the controversy of 'back advertising' by YouTubers through comment analysis. Specifically, among text analysis using R programs, we intend to analyze the issue through various methods such as word cloud, qgraph analysis, LDA, and word2vec analysis, a deep learning technique. The target of the analysis was to analyze the channels of three YouTubers who belonged to the controversy of the 'back advertising' YouTuber and uploaded the 'Apology video'. The 5 most recent videos of Muk-bang YouTuber Moon Bok-hee, who has a similar content disposition to SussTV's Han Hye-yeon stylist, which was controversial, and Yang Pang, a YouTuber who showed various contents (August 09, 2020) Criterion and her first 5 videos uploaded were reviewed. As a result of the study, most of the comments that showed positive reactions before the controversy, but after the controversy, it was found that negative reactions accounted for most of the comments. Therefore, this study examines the degree of change of the public about influencers through comments after the controversy over 'back advertising' through various analysis using R program. This research also devises various measures to prevent the occurrence of back advertising of influencers in the future.
Journal of Elementary Mathematics Education in Korea
/
v.19
no.4
/
pp.625-647
/
2015
How a pre-service teacher understands and comments on mathematics instruction can serve as the foundation of her teaching expertise. Given that prospective teachers observe demonstrative mathematics teaching implemented by an in-service teacher and make a comment on it during their practicum period, this paper specified the levels of their ability in commenting on mathematics instruction and explored the characteristics of such levels. It is significant that this paper provides a systematic and comprehensive analysis of such levels in terms of topic, agent, stance, evidence, and alternative perspective. The results of this study showed that the commenting levels may be classified by Level 1 (fragmentary), Level 2 (inspective), and Level 3 (analytical), and that the most frequent level of this study was at Level 2. Multiple regression analysis demonstrated that stance is the most influential in determining the levels of comments among their analytic components. An analysis of the participants' anecdotes showed that the experience of observing demonstrative teaching during the practicum may have impact on the belief of mathematics instruction and self-image as a teacher. Building on these results, this paper provides implications of teacher preparation programs to enhance prospective teachers' ability to analyze elementary mathematics lessons.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.