• Title/Summary/Keyword: Combined Transmission Line

Search Result 96, Processing Time 0.021 seconds

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

Evaluation of Operation Practicality on Line with Aluminum Conductor in Underground T&D Systems (지중송전 및 배전계통에서 알루미늄 도체 선로운용의 실용성 평가)

  • Jang, Ju-Yeong;Lee, Jong-Beom;Kim, Yong-Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.492-499
    • /
    • 2011
  • This paper describes that the evaluation on operation practicality of Al conductor cable will be used instead of Cu conductor cable. Analysis is divided into two kinds of cases as transmission and distribution. To evaluate that Al conductor line has the insulation strength indeed safely, various analysis and calculation such as single line-to-ground fault current, lightning surge and allowance current were carried. Model was established based on real combined transmission and distribution is being used in utility with EMTP. The analysis results on Al and Cu conductor line were compared each other. It was proved that Al conductor line can be operated instead of Cu conductor line without special insulation problem in transmission and distribution, in electrical view point such as overvoltage and allowance current.

Fault Location Using Neuro-Fuzzy for the Line-to-Ground Fault in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전선로에서의 1선지락 고장시 고장점 추정)

  • 김경호;이종범;정영호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.602-609
    • /
    • 2003
  • This paper describes the fault location calculation using neuro-fuzzy systems in combined transmission lines with underground power cables. Neuro-fuzzy systems used in this paper are composed of two parts for fault section and fault location. First, neuro-fuzzy system discriminates the fault section between overhead and underground with normalized detail coefficient obtained by wavelet transform. Normalized detail coefficients of voltage and current in half cycle information are used for the inputs of neuro-fuzzy system. As the result of neuro-fuzzy system for fault section, impedance of selected fault section is calculated and it is used as the inputs of the neuro-fuzzy systems for fault location. Neuro-fuzzy systems for fault location also consist of two parts. One calculates the fault location of overhead, and the other does for underground. Fault section is completely classified and neuro-fuzzy system for fault location calculates the distance from the relaying point. Neuro-fuzzy systems proposed in this paper shows the excellent results of fault section and fault location.

Design of a Transmission Line using Defected Ground Structure and Artificial Dielectric Substrate (결함접지구조와 가유전체 기판구조를 결합한 전송선로의 설계)

  • Kwon, Kyunghoon;Lim, Jongsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3474-3481
    • /
    • 2013
  • In this work, a new high frequency transmission line structure combined with defected ground structure (DGS) and artificial dielectric substrate (ADS) structure is proposed. DGS patterns give add the additional inductance to transmission lines and results in the increased characteristic impedance for a given line width. To the contrary, ADS presents increased capacitance and reduced line impedance. So both play a role in reducing the length of transmission lines commonly, but in preserving the line impedance complementarily. This means that the length of transmission lines can be reduced furtherly by DGS and ADS without a critical change of line width compared to the cases when one of DGS and ADS is used only. As examples, $35{\sim}100{\Omega}$ transmission lines having DGS and ADS are designed, fabricated, measured, and compared to the simulation results. A good agreement between the simulated and measured line impedances is presented. In addition, the physical lengths of the proposed transmission lines are only 55.4~76.9% of those of the normal microstrip lines for the same electrical lengths.

Integrated Optimization of Combined Generation and Transmission Expansion Planning Considering Bus Voltage Limits

  • Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1202-1209
    • /
    • 2014
  • A novel integrated optimization method is proposed to combine both generation and transmission line expansion problem considering bus voltage limit. Most of the existing researches on the combined generation and transmission expansion planning cannot consider bus voltages and reactive power flow limits because they are mostly based on the DC power flow model. In this paper the AC power flow model and nonlinear constraints related to reactive power are simplified and modified to improve the computation time and convergence. The proposed method has been successfully applied to Garver's six-bus system which is one of the most frequently used small scale sample systems to verify the transmission expansion method.

Effectiveness Evaluation on Combined Connection Operation of OF and XLPE Cable (지중송전계통에서 OF 및 XLPE 케이블 혼용 연계 운용의 효용성 평가)

  • Chea, Jik-byoung;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.857-863
    • /
    • 2015
  • OF cable with excellent reliability and economic efficiency, has been used as the main cable of underground transmission in Korea. However, as XLPE cable is excellent in view points such as reduction of loss, convenience on the construction/operation, and manufacturing technology, it has been replaced as instead of OF cable. Also, when the aging occurs in some sections of OF cable, the section is replaced as XLPE cable without changing of whole cable line. However, there are some differences like electrical constants between both types of cables. Therefore if underground transmission system will be operated as combined connection composited of both cables, it should be proved that overvoltage is stable in steady and transient state. This paper describes the effectiveness of connection operation in combined OF and XLPE cable. For the evaluation of effectiveness, some important analysis such as sheath component voltage, lightning and switching overvoltage, single line-to-ground fault are carried out in steady and transient state. EMTP/ATPDraw is used for modeling and analysis of system.

Insulation Design and Reliability Evaluation of ±80kV HVDC XLPE Cables

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1002-1008
    • /
    • 2014
  • This paper describes insulation design and its reliability evaluation of ${\pm}80kV$ HVDC XLPE cable. Recently, the construction of HVDC transmission system, which is combined overhead line with underground cable, has been completed. This system is installed with existing 154 kV AC transmission line on the same tower. In this paper, the lightning transient analysis is firstly reviewed for selection of basic impulse insulation level and nominal insulation thickness. Then the electrical performance tests including load cycle test and superimposed impulse test based on CIGRE TB 496 are performed to evaluate the reliability of newly designed HVDC cable. There is no breakdown for ${\pm}80kV$ HVDC XLPE cable during electrical performance test. Finally, this system is installed in Jeju island based on successful electrical performance test (Type test). After installation tests are also successfully completed.

Fault Location using Neuro-Fuzzy in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전계통에서의 고장점 추정)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.319-322
    • /
    • 2002
  • Distance relay is operated in calculating line impedance. It can be worked accurately in overhead line. However, power cables or combined transmission lines need compensation for calculated impedance because cable systems have sheaths, grounding wires and sheath voltage limiters(SVLs) Neuro-fuzzy can be viewed either as a fuzay system, a neural network or fuzzy neural network and it can estimate the location of the fault accurately. In this paper, fault section and fault location can be classified and estimated in neuro- fuzzy inference system and neural network.

  • PDF

Analysis of Lightning Overvoltage on the Combined Power Transmission Line and Actuation of Arrester (혼합송전계통에서 뇌과전압해석 및 피뢰기 동작특성 검토)

  • Kim, Nam-Yoel;Kim, Kyoung-Ho;Lee, Jong-Beom;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.491-493
    • /
    • 2001
  • This paper describes the effect of lightning current on combination transmission line. In the paper, an lightning current which can generate 2/80[${\mu}s$]. 20[kA] - 40[kA] waveform is modeled in ATPDraw. The lightning current invaded to the overhead power transmission line propagates to the underground power cable. The simulation was performed to analyze the effect of arrester location and overvoltage occurred in power cable.

  • PDF

A Study on the Characteristics of Microwave Transmission Lines Having Defected Ground Structures and Lumped Elements (결함접지구조와 집중소자를 지닌 초고주파 전송선로의 전기적 특성 연구)

  • Lim Jong-Sik;Bae Ju-Seok;Choi Kwan-Sun;Ahn Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.616-624
    • /
    • 2006
  • In this paper, the transfer characteristics of high frequency transmission line having defected ground structure (DGS) and lumped elements are described. When a DGS, which is a kind of periodic structure, is inserted into a transmission line, its equivalent inductance and capacitance elements are added to the characteristics of the standard transmission line. This generates resonance, 3dB cut-off frequency, low-pass, band rejection, and band pass characteristics, and causes a slow-wave and enlarged electrical length of the transmission line. In addition, if the DGS is combined by a lumped element such as resistor, capacitor, and inductor, the resonant and cut-off frequencies moves up or down and other changes occur in the transmission characteristics. The variation of the transmission characteristics is described with the qualitative prediction and measured data.

  • PDF