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Abstract – An effective statistical feature extraction approach of data sampling of fault in the 
combined transmission system is presented in this paper. The proposed algorithm leads to high 
accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires 
impedance measurement data from one end of the transmission line. Modal decomposition is used to 
extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet 
transform. Statistical sampling is used to extract appropriate fault features as benchmark of 
decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the 
performance of statistical sampling performance. The overall time of sampling is not exceeding 1¼ 
cycles, taking into account the interval time. The proposed method takes two steps of sampling. The 
first step takes ¾ cycle of during-fault and the second step takes ¼ cycle of post fault impedance. The 
interval time between the two steps is assumed to be ¼ cycle. Extensive studies using MATLAB 
software show accurate fault location estimation and fault type classification of the proposed method. 
The classifier result is presented and compared with well-established travelling wave methods and the 
performance of the algorithms are analyzed and discussed. 
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1. Introduction 
 
High voltage Transmission Line (TL) is designed based 

on the maximum power required at the receiving end and 
the related voltage. Normally, Over-Head Line (OHL) is 
constructed by a similar conductor with homogenous 
characteristics to avoid any stress on non-homogeneous 
sections. However, in several cases, such as electrification 
of islands, offshore regions and long span OHL, a designer 
may connect OHL with an Under-Ground Cable (UGC). 
Moreover, junctions can be added to OHL in order to feed 
newly constructed TL or connect the upstream network to a 
microgrid [1-3]. These issues will change the homogeneity 
of line characteristics. 

Fault detection and classification methods [4, 5] (fault 
analysis) are divided into impedance measurement and 
Travelling Wave (TW) methods. In TW theory, high 
frequency waves generated during the fault on a transmission 
line are studied. These high frequency signals can be 
extracted by using an advanced signal processing technique 
[6].  

These high frequency waves travelled toward both 
ends of the transmission line. They will be reflected when 
the waves face discontinuity. Therefore, the fault location 

can be estimated by using TW equations [7]. The 
implementation of TW method is more expensive 
compared to impedance-based method due to the 
requirements for high frequency data acquisition system 
and a highly accurate common time reference at both ends 
[8]. On the other hand, measured impedance in a TL is 
proportional to line length and is derived from Ohm’s Law. 
The impedance measurement method [9] is not a costly 
method but rather is affected by fault resistance.  

The electrical characteristics of OHL and UGC for the 
same voltage level are quite different. This issue affects 
the measurement and monitoring devices of combined 
TL significantly. Combined TL is affected by two major 
issues: non-homogeneous characteristics of TL and 
charging current in UGC. A large charging current of 
UGC affects the impedance measurement method. When 
the fault occurred on the cable section, the measured 
impedance is changed due to current variation, cable cross 
bounding, grounding method, etc. Hence, fault detection 
methods are applied on UGC faced with mis-operation 
[10]. Although the combined transmission is a special 
scheme for protection, the interesting characteristics of the 
combined section are valuable for the study. The power 
system is mainly protected by algorithmic-based protection 
[6, 7, 11-14]. These techniques are more useful when the 
network suffers from non-homogenous impedance of 
combined transmission line. The proposed method is 
validated on a modified combined transmission system 
[15]. This study is providing further development on 
combined transmission line fault location estimation and 
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fault type classification based on the proposed statistical 
sampling. Normally, the fault analysis for combined TL is 
fulfilled by TW without considering the cost. Then the 
main contribution of this paper is taking into account the 
fault location estimation and fault type classification 
accuracy as well as cost. Support Vector Machine (SVM) is 
used for classification because it is less likely to over-fit 
and new sample data can be added to system due to shorter 
time of training compared with Artificial Neural Network 
(ANN) [11]. To achieve this aim, an impedance-based 
single-ended method is developed to reach fault analysis in 
minimum cost. The Proposed Method (PM) is an online 
system which can be used in offline analysis. Finally, the 
PM is compared with double-ended TW [15] and single-
ended [16] techniques for a comprehensive analysis. 

 
 

2. Economic Analysis 
 
This research is taking into account the fault location 

estimation and fault type classification accuracy as well as 
cost. The economic analysis considers cost of installation 
and maintenance as well as time of operation and accuracy 
on fault detection and estimation.  

 
2.1 Cost analysis 

 
The estimated cost of proposed method and TW method 

is tabulated in Table 1 for the most important equipment. 
It illustrates that installation of double-ended TW and 
single-ended TW methods are around 100,000.00 USD 
and 40,000.00 USD more than PM, respectively. On the 
other hand, the number of equipment used in TW 
methods are more than PM. Therefore, the total cost of 
PM is much less than TW methods, taking into account 
the maintenance and repair services costs. TW methods 
accuracy is improved by using optical transducer; thereby 
the installation price is going to increase by including 
optical equipment [16]. 

 
2.2 Time of operation 

 
The PM uses 1¼ cycles of fault data, which is faster than 

high speed protective relays [17]. In other words, the circuit 
breaker will open the TL in 1¼ cycles. The consumed time 
for feature extraction is 3 milliseconds and time of SVM 
operation is around 1.5 milliseconds, with a core i3 
processor and 8 GB RAM. Therefore, the overall time for a 
fault analysis does not exceed 30 milliseconds and can be 
further reduced by using a higher performance computer. 
The sampling rate for PM is 11.52 kHz [18]. 

The time of fast fault detection for TW method is few 
milliseconds and the overall operation time for detecting 
the fault location for TW method is in a matter of seconds 
with sampling rate of 36 MHz [19]. 

Table 1. The estimated cost of methods 

TW (USD) Method PM 
(USD) Single-ended Double-ended 

CT 3×7,500.0 3×7,500.0 6×7,500.0 
CVT 3×8,000.0 3×10,000.0 6×10,000.0 

Computer 500.0 500.0 500.0 
TR 15,500.0 3×17,250.0 3×17,250.0 

GPS - - 3×2,500.0 
Total 62,500.0 104,750.0 164,750.0 

CT: Current Transformer, CVT: Capacitive Voltage Transformer,  
TR: Transient Recorder, GPS: Global Positioning System.  

 
2.3 Accuracy analysis 

 
The worst case of fault is reported for a fault with 

simultaneous high resistance and small inception angle [15, 
16]. The accuracy analysis is 0.21 km, 3.8 km and 2.0 km 
on combined transmission line for double-ended TW [15], 
single-ended TW [16] and PM, respectively. The accuracy 
of double-ended TW is a critical issue when the remote 
connection is missed [19]. These comparisons are tabulated 
in sections 7 and 8. 

 
 

3. System Model 
 
OHL and UGC are modeled in order to obtain high 

accuracy. The simulated system is tested under typical fault 
types. Fig. 1 presents the flowchart of fault feature extraction 
in combined TL.  

The positive sequence impedance is extracted after modal 
decomposition on waveforms. Then, wavelet transform is 
implemented on the measured impedance signal. The 
decomposed signal is statistically sampled to find the 
signal features. Finally, extracted features are used as a 
benchmark of fault signal to develop the fault analysis 
procedure. These features are used to train SVM classifier 
to estimate fault location and cluster fault type. 

 

 
Fig. 1. Flowchart of fault feature extraction 
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Fig. 2. Modeling of charging current for cable section 

 
3.1. Mathematical modeling 

 
To mathematically model the combined transmission 

system, the cable section needs to be analysed adequately 
[20, 21]. The equivalent lumped parameter model for cable 
section is represented in Appendix A. The main problem of 
cable is the huge rate of charging current. The cable section 
of combined transmission line is modelled in Fig. 2.  

The ic and i represent capacitive current and cable 
current, respectively. The charging current compensation 
based on presented model [22] is improved for equivalent 
lumped parameter model.  
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The term Y/2 in (2) represents half of the total 

capacitance of cable [22]. Now, by using two times 
integration of (1) and (2): 
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and by substituting (4) and (5) in (3): 
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Now, by substituting the terms of equivalent lumped 

parameter into (6), the equation is as follows: 
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The (7) covers the non-homogeneity and charging 

current compensation simultaneously.   
Fig. 3 illustrates the combined transmission line analysis 

after fault is executed. The ‘ZTL’ represents the total 
equivalent transmission line impedance, ‘Zs’ and ‘p’ are the 
source impedance and fault position, respectively. The 
detailed parameters of combined transmission line are 
presented in Appendix B. 

The analysis of charging current and non-uniform 
conductors are combined and solved for the impedance 
measurement at relay point. 

 
Fig. 3. Single diagram of fault analysis on combined TL 
 

3.2. Modal decomposition 
 
After transformation of the voltage and current to 

sequence components, the positive sequence impedance 
(Zpos) is calculated from Ohm’s Law to be used in fault 
analysis. It is useful to extract features of signal for 
protective purposes. This signal covers three phase 
components to reduce time of analysis and calculation 
burden. The overall time of sampling is not exceeding 1¼ 
cycles taking into account the interval time. The proposed 
method takes two steps of sampling. In the first step, it 
takes ¾ cycle and in the second step, takes ¼ cycle of fault 
impedance. The interval time between the two steps is ¼ 
cycle.  

 
3.3. Wavelet transform 

 
In the protection scheme, time of signal processing is 

vital. Therefore, Discrete Wavelet Transform (DWT) is 
applied to the signal. The DWT is used as a variable data 
window at fault time to increase the resolution of the detail 
signal [11, 23]. This is because the resolution depends on 
time and fault signal value. The impedance waveform is 
carrying high frequency signals which are generated with 
respect to fault location, fault resistance, fault angle and 
fault type. Extracted coefficients of approximation and 
detail of DWT are used as a benchmark for fault analysis. 
When the wavelet transform is implemented on a signal, 
the most important issue is to choose the best level of 
analysis and data window length. A higher decomposition 
level will increase the resolution of time-frequency scaling, 
but the valuable part of the signal in high frequencies is 
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missed. When the scaling and translation increase, the high 
frequency signals are faded. These high frequency signals 
carry the important features of fault signal. A fault signal 
will be decomposed to approximation and detail signals by 
appropriate mother wavelet. 

 
 
4. Feature Extraction and Machine Learning 

 
Support vector machine was used for classification 

problems in statistical learning theory and structural risk 
minimization. It uses structural minimization principles 
to choose discriminative function that have minimal risk 
bound; the necessary training sample size is smaller. 
Hence, SVMs are less likely to over-fit data than over 
classification algorithm such as ANN [11]. 

 
4.1. Support Vector Machine (SVM) 

 
The SVM attitude shows more systematic approach to 

learn linear and non-linear decision boundaries. Although 
the SVMs are usually used to fault classification on 
transmission lines, they can be applied for fault location 
estimation [24].  

The SVM classifier finds an optimal hyperplane to 
separate data sets with different classes ({+1, -1}). The 
linear hyperplane is defined by a weight vector W and a 
term b as [16]: 
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1
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  (8) 

 
The two classes are categorized by separation margin 

(m) given as: 
 

 
2m

W
=  (9) 

 
In order to maximize m, ||W|| is minimized. The 

maximum m is obtained by calculating quadratic 
optimization problem: 

 

 2min. 1
2
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subject to yi = (WTxi+b)  ≥1. 
where yi∈{+1, -1} is the corresponding label for each xi. 

The separation between the classes is maximized by 
providing the values of W and b. The SVMs are obtained 
by solving the following dual optimization problem: 
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where αi is the Lagrangian multiplier and N is the number 
of training data. The non-linear function Φ is used to obtain 
a linearly separable data set by mapping the non-linearly 
separable input space into a higher dimensional feature 
space. The Kernel function k is utilized to calculate the 
inner product of input space. Thus, the SVMs are obtained 
by solving the following optimization problem: 
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where k(xi,xj) is the kernel function. 
The Gaussian kernel RBF function is given as: 
 

 
2

( , ) exp( ( ) / )i j i jk x x x x g= - -   (13)  
 

where xi and xj are n_dimension input vectors. γ = 2σ2, σ is 
the standard deviation of Gaussian. The kernel function 
parameter (γ) is tuned only once in order to achieve 
sufficient accuracy [16].  

The graphical classification structure is shown in Fig. 4. 
The procedure of fault analysis in SVM classifier 
illustrates in Fig. 5. The trained SVM classifiers are tried to 
find the best class for the features based on (9).  

 

 
Fig. 4. Classification structure 

 

 
Fig. 5. Procedure of fault analysis in SVM 
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4.2. Feature extraction procedure 
 
Feature extraction algorithm is used to reduce the data 

analysis complexity, rate of over-fit in algorithms and time 
of analysis. In this study, the positive sequence impedance 
is sampled in rate of 11.52 kHz and 20 statistical features 
are extracted. The faulty portion of the signal is divided into 
two steps, namely ‘during-fault’ and ‘post-fault’ impedance. 
Fig. 6 (a) represents a fault signal before decomposition. 
The sub-figure 6 (b) to (e) represent approximation of 
during-fault, detail of during-fault, approximation of 
post-fault and detail of post-fault of decomposed signal, 
respectively. The extracted features are explained as 
follows: 

 
4.2.1. Average of impedance  

 
The average value ( x ) of decomposed fault signal 

illustrates a meaningful feature. The average of positive 
sequence impedance on during-fault and post-fault parts 
are extracted. The average of the impedance is presented in 
(14). In this equation, ‘xi’ represents the ith element of 
decomposed signal, and ‘N’ shows the number of sample 
data in positive sequence impedance.  

 

 
1

1
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x xiN i
= å

=
 (14) 

 
4.2.2. Variance of impedance  

 
The next extracted feature from signal is variance (σ2). 

This feature provides clearer properties for fault analysis 
than the average value due to the rate of fluctuation on the 
decomposed signal.  
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4.2.3. Weighted arithmetic mean 
 
The weighted arithmetic mean function ( xw ) is used to 

find better discrimination on fault analysis. Implementation 
of this function highlights the contribution of extrema 
points which can be more efficient in pattern recognition. 
The weight of sample ‘ωi’ is assigned to represent the 
sample position in the decomposed signal.  
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4.2.4. Extrema points 

 
The extrema points (minimum and maximum) of each 

data window range are extracted and compared to find the 
global maximum and minimum in the selected range.  

By using statistical sampling, in total 20 features are 
extracted. Five features are extracted from approximation 
of during-fault impedance ( x , σ2, max, min, xw ) and the 
same group of features are extracted from detail of during-
fault impedance. On the other hand, 10 features are 
extracted from post-fault impedance in which half of 
these features are related to approximation and others are 
related to detail. 

 
4.3. Creating sample data  

 
Four variables in the network are changed to construct 

different network conditions which are: fault location, 
fault resistance, fault angle and fault type. Fault type 
values are selected as integer values which vary from 1-4, 
representing four categories. 

Numbers are assigned for well-known fault types which 
are listed in Table 2. Fault resistance is selected as a real 
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Fig. 6. (a) Fault signal analysis for a solid LLG fault at 33 km with 60° fault angle; (b) Approximation from during-fault; (c) 
Decomposed detail from during-fault; (d) Approximation from post-fault; (e) Decomposed detail from post-fault 
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value. The fault resistance is varied in 12 steps from 0-50Ω 
[16]. Fault angle is selected as a real value and is varied 
from 0- 90° in 4 steps. The last output layer for training 
classifier is fault location. 

It is selected as a real value and varied by steps of 1 km 
in range of 0-100 km over OHL. Moreover, it is varied by 
steps of 0.2 km in range of 100.01-110 km over UGC. 
Hence, by changing the fault location, fault resistance, 
fault type and fault angle, the overall 28992 (151×12×4×4) 
sample data are created. It is aforementioned that data 
extraction for a sample data contains 20 features. These 
features are real values which statistically illustrate the 
fault signal. 

 
 

5. Algorithm Evaluation 
 
The classifier is used to estimate the fault location and 

cluster fault type in the pattern recognition structure. The 
performance of PM is evaluated based on five different 
error indices to clearly illustrate the fault analysis method 
in combined TL. The indicators used h are as follows: 

 
5.1. Mean Square Error (MSE) 

 
This index is routine in classifiers performance 

evaluation in MATLAB software. MSE presents the risk 
of a function in the quadratic loss. The mathematical 
representation of MSE is shown in (17). This index is the 
summation of the square of difference between the 
calculated (Ycal) and actual (Yact) values over the number of 
test data (N). 

 

 ( )
1

21 N

i
MSE Y YactcalN =

= -å  (17) 

 
5.2. Average Error (AE) 

 
This index is a popular one in evaluating the estimation 

performance. This function is the summation of the 
difference between calculated and actual values, which is 
divided by the number of test data. The AE index is 
represented in (18).  
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5.3. Standard Deviation Error (SDE) 

 
This index calculates the average value of test data error 

from variance. SDE is the summation of the square of 
errors divided over the number of test data minus one. The 
square root of the resultant value presents SDE as follows: 
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5.4. Mean Absolute Percentage Error (MAPE) 

 
This index is well-known in error calculation [23, 25]. 

The first step of the MAPE calculation is to find the 
Absolute Percentage Error (APE) for test patterns, as stated 
in (20): 

 

 100%
Y YactcalAPE
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Then, MAPE is calculated by summing APEs as 

represented in (21). This index represents the error value in 
percentage. 
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5.5 Probability Distribution Function (PDF) 

 
The proposed index is widely used in statistical analysis 

[26]. It is desired to evaluate the classifiers calculated 
results statistically on normal PDF. This function will 
illustrate the rate of calculated values with appropriate 
mother wavelets versus the rate of actual data on a 
predefined interval. This index represents the error value in 
percentage. 

 
 

6. Results and Discussion 
 
The transmission line in Fig. 3 is selected based on [15]  

to have better comparison and validation with a TW 
based method. Assume the transmission line total length is 
‘L’. When a fault occurred in a distance of ‘x’ from the 
monitoring bus, the transmission line is divided into 
three non-homogeneous sections. The first section is from 
monitoring bus until fault point ‘x’, the second section is 
from the fault point to the receiving end bus with the length 
of ‘L–x’ and the last section is fault resistance. This 
perspective can be helpful in simulation to reduce analysis 
time. The fault point and resistance can be easily changed 
over TL using this concept. The ‘db4’ mother wavelet is 
used to keep decomposed signal resolution in range.  

This simulation is done for four well-known fault 
types. Fault location is changed over TL and fault angle 
is changed from 0-90°. Finally, fault resistance is 
changed in a range of 0-50 Ω. For evaluating the proposed 

Table 2. Fault type classification 

Fault Type LG LLG LLLG LL 
Assign No. 1 2 3 4 
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method, overall 100 test patterns are generated by using 
Monte-Carlo algorithm. The output data are real values of 
fault type and fault location. Training classifier with a 
Core-i3 processor and 8 GB of RAM for estimating fault 
location and clustering fault type took around 12 seconds 
for SVM. 

 
6.1. Classification of fault type 

 
Fig. 7 (a) proves the ability of proposed sampling 

method and SVM classifier on clustering the fault type. 
The error rates are tabulated in Table 3 which shows MSE 
is 0.37, average error is 0.23 and the standard deviation of 
errors is 0.566. Moreover, mean absolute percentage error 
illustrates that the PM has less than 0.1% error while the 
PDF graph shows a good classification for faults.  

 
Table 3 Error indices for clustering on fault type 

Classifier MSE AE SDE MAPE (%) 
SVM 0.37 0.23 0.566 0.0969 

 

6.2. Estimation of fault location 
 
The main target of this study is to find the fault location 

in combined TL with a significant section of UGC. The 
fault location estimation by PM always has integer value. 
This is mainly related to: (I ) The train data set for fault 
location is changed by step of 1 km. (II ) The SVM is a 
discrete classifier. 

Table 4 shows calculated error of the proposed method. 
The AE of the proposed method is around 1.15 km for 
the test pattern of Fig. 8 (a). Fig. 8 (b) portrays the good 
performance of SVM in fault location estimation. The PDF 
of proposed method is following actual PDF of test pattern. 
Furthermore, the PM can discriminate between faults on 
OHL and UGC. This is because of the PDF graphs of 
actual and PM show close trend. This means that the 
performance of PM on UGC is fine. 

 
Table 4 Error indices for estimation on fault location 

Classifier MSE (km) AE (km) SDE (km) MAPE (%) 
SVM 5.448 1.152 2.05 0.1246 
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Fig. 7. (a) Error of fault type clustering of test pattern; (b)
PDF of fault type of test pattern 
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Fig. 8. (a) Error of fault location estimation of test pattern; 
(b) PDF of fault location of test pattern 



J. Tavalaei, M. H. Habibuddin, A. Khairuddin and A. A. Mohd Zin 

 http://www.jeet.or.kr │ 2113

7. Comparison of Proposed Method Ability with 
Double-ended Travelling Wave Method 

 
The performance of the PM is compared with the 

existing accurate method in fault detection on combined 
TL. This TW double-ended technique [15] is used for 
fault analysis and the proposed network is adequately 
modeled and sampled. The results and the performance 
of both methods on fault location estimation and fault 
type classification are compared and presented. The error 
is calculated as following [15, 16]: 

 

 error =
. .

.
|

.
| actual fault calculated fault ×100%

total section length
-

 (22) 

 
7.1. Fault distance on accuracy of methods 

 
The trained SVM is used to estimate fault distance for 

LG faults with 10Ω fault resistance. Table 5 presents the 
evaluation of PM and TW on fault location estimation. 
The maximum error of TW method in OHL and UGC is 
not exceeding 0.18% and 1.65%, respectively. On the 
other hand, the proposed method error by applying SVM 
classifier in OHL is 1.0% and in UGC is 10%. The PM 
error is better estimated in OHL compared with UGC. 
The maximum error of PM is not exceeding 1 km. 

 
7.2. Fault type on accuracy of methods 

 
In this section, the PM and TW methods are tested under 

faults occurring 30 km away of OHL with fault resistance 

of 50 Ω and 0° fault angle. The effect of fault type on the 
accuracy of fault detection in OHL is tabulated in Table 6. 
TW method accuracy is acceptable except for the ACG 
fault which increased the ratio to around 0.21% (210 m).  

The PM performance is affected by the high resistance 
and small inception angle in ‘LG’ fault type. For single 
line to ground fault the series sequence network increases 
the fault resistance three times of nominal one [27]. The 
maximum error for fault location with PM is 2.0% (2 
km).  

 
7.3. Fault resistance influence on accuracy of methods 

 
The influence of fault resistance on the accuracy of fault 

location estimation is presented in Table 7. This table 
shows a comparison between PM and TW methods for 
faults at 108 km when fault resistance is varied from 10 Ω 
to 50 Ω. The maximum error of the TW method did not 
exceed 1.0% (100 m), but it is close to 10% (1 km) for PM. 
This is due to double-ended fault location estimation that 
can increase the accuracy of the TW method. 

 
7.4. Fault angle influence on accuracy of methods  

 
To evaluate fault angle influence on the proposed 

sampling method, LLG with fault resistance of 10 Ω at 
fault distance of 90 km on OHL and fault distance of 101 
km for UGC with inception angle varied between 0° to 90° 
in 5 steps. The results are tabulated in Table 8. It is clear 
that the fault angle impact on fault location estimation of 

Table 5. Fault location estimation on PM and TW 

 Actual (km) TW (km) % error SVM (km) % error 
3.5 3.5032 0.0032 4 0.5 
5 5.0048 0.0048 6 1.0 

15 14.9952 0.0048 16 1.0 
20.5 20.6286 0.1286 21 0.5 
40.5 40.6314 0.1314 41 0.5 
50 50.1177 0.1177 50 0.0 
66 66.1174 0.1174 66 0.0 
72 72.1786 0.1786 72 0.0 
83 83.0152 0.0152 83 0.0 

O
H

L 

96 95.9880 0.012 97 1.0 
102 102.0192 0.192 103 10.0 

104.2 104.3038 1.038 105 8.0 
106 106.1120 1.12 107 10.0 

107.5 107.6643 1.643 108 5.0 
109.1 109.2325 1.325 110 9.0 

U
G

C
 

109.5 109.5301 0.301 110 5.0 
 

Table 6. Estimated location with influence of fault type 

Actual (km) TW (km) % error SVM (km) % error 
AG 30.0029 0.0029 28 2.0 

ACG 30.2094 0.2094 30 0.0 
AB 29.9973 0.0027 30 0.0 

ABCG 30.0033 0.0033 30 0.0 
 

 
Table 7. Estimated location with influence of fault resistance 

Fault 
type 

Fault  
resistance TW (km) % error SVM 

(km) % error 

SLG 10 107.9012 0.9880 109 10.0 
SLG 20 107.933 0.6700 109 10.0 
SLG 50 107.9875 0.1250 109 10.0 
DLG 10 107.902 0.9800 108 0.0 
DLG 20 107.9249 0.7510 108 0.0 
DLG 50 107.9876 0.1240 109 10.0 
TLG 10 107.9327 0.6730 109 10.0 
TLG 20 107.9559 0.4410 109 10.0 
TLG 50 107.9943 0.0570 108 0.0 
 

Table 8. Estimated location with influence of inception 
angle 

Location Fault 
angle TW (km) % error SVM 

(km) % error 

0° 89.9908 0.0092 91 1.0 
30° 89.9919 0.0081 91 1.0 
45° 90.0605 0.0605 91 1.0 
60° 89.9997 0.0003 91 1.0 O

H
L 

90° 90.0018 0.0018 91 1.0 
0° 100.8501 1.499 102 10.0 

30° 100.8821 1.179 102 10.0 
45° 101.0579 0.579 102 10.0 
60° 100.9544 0.456 102 10.0 U

G
C

 

90° 100.9872 0.128 102 10.0 
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PM and SVM is constant. The error of PM did not exceed 
1 km, but TW method was significantly affected by fault 
inception angle on UGC section. 

 
 

8. Comparison of Proposed Method Ability with 
Single-ended Travelling Wave Method 

 
To have a comprehensive comparison on the fault location 

estimation, the PM performance is also compared with a 
single-ended TW method [16]. The critical problem of 
single-ended TW method for combined transmission line 
is related to multiple joint-nodes in cable section that 
cause extensive reflections of high frequency signal. 
Hence, a technical person with adequate knowledge of 
TW analysis as well as precision transient recorder are 
required to find the correct reflected signal. These reasons 
make single-ended TW fault locator an inaccurate and 
expensive technique for combined transmission line. 

The details of single-ended TW method is represented 
in Table 9. Although, the PM uses the statistical feature 
extraction, the single-ended TW utilizes the wavelet 
transformation coefficients (WTC) for feature extraction. 
The total sample data for single-ended TW is 2448 which 
is around one-twelve times of PM. The PM utilizes only 
one SVM classifier for fault location estimation, but the 
single-ended TW method uses three SVM classifiers for 
faulty section identification and fault location calculation. 
This method required additional calculation based on 
Bewley lattice diagram for fault location calculation.  

The maximum error of fault estimation for PM in case 
of high resistance (Rf = 50 Ω) is 1.0 km, however it is 
around 3.22 km for single-ended TW method. In the case 
of fault with small inception angle (α ≤ 5˚), the error is 
1.0 km and 3.22 km for PM and single-ended TW method, 
respectively.  

In the case of the worst fault with high resistance 
simultaneously with small inception angle, the PM error is 
not exceeding 2.0 km. However, it is around 4.8 km for 
single-ended TW. 

 
Table 9. The comparison between single-ended methods 

Method PM TW Single-ended 
Mother wavelet DB-4 DB-4 

Modal  
decomposition 

Symmetrical 
components Clark decomposition 

Extracted feature Statistical Wavelet transformation 
coefficients  

Total sample data 28992 2448 
No. of SVM  1 3 

Kernel function RBF RBF 
High resistance  

(Rf = 50 Ω) 1.0 km 3.22 km 

Fault inception angle  
(α ≤ 5˚) 1.0 km 3.22 km 

Max error in worst case 
(Rf = 50 Ω and α ≤ 5˚) 2.0 km 4.83 km 

8. Conclusion 
 
The proposed method is an accurate single-ended 

method for fault analysis. The performance of using this 
method over double-ended and single-ended TW based 
methods are shown by comparing the simulation results. 
In addition, this PM is an impedance-based approach that 
is quite cheap compared to the expensive methods of the 
TW analysis. This method can be applied online or offline 
according to the power system operator’s desire. The PM 
can be implemented on any power system when it is 
trained appropriately by sample data. The extracted features 
by wavelet decomposition on positive sequence impedance 
are statistically sampled and then used as benchmark for 
fault analysis. These sample data are used to train SVM to 
estimate the fault type and fault location. The proposed 
method can discriminate between faults at OHL and UGC 
sections.  

 
 

APPENDIX A 
 
The lumped parameter model does not represent a long 

transmission line exactly due to non-uniform distributed 
line parameters. It is possible to find the equivalent 
circuit of long transmission accompanied by line accuracy. 
Assume the lumped parameter model is similar to Fig. A1. 
The series arm of equivalent lumped parameter and the 
shunt arms are represented by Z’ and Y’/2, respectively. 
Hence, the normal lumped parameter equation will change 
to [27]: 

 

 1
2 R RS

Z YV V Z I
¢ ¢æ ö ¢= + +ç ÷

è ø
 (A.1) 

 
To obtain the value of equivalent lumped parameter 

model equal to distributed parameter, the coefficients of VR 
and IR must be identical. The distributed parameter 
coefficients are as follows: 

 
 cosh sinhcR RSV V l I Z lg g= +  (A.2) 

 
Now, equating the coefficient of IR in equation (A.1) and 

(A.2): 
 

 sinhZ Z lc g¢ =   (A.3) 

 
Fig. A1. The equivalent parameter model 
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sinhsinhz lZ l zl

y zyl
gg¢ = =  (A.4) 

 
sinh lZ Z

l
g

g
¢ =  (A.5) 

 
where Z is equal to zl, the total series impedance of line. 
The term of sinh(γl)/(γl) is the factor by which the series 
impedance of nominal lumped parameter must be 
multiplied to convert to equivalent lumped parameter. 

To investigate the VR, the coefficient of Eqs. (A.1) and 
(A.2) is to equate: 

 

 1 cosh
2

Z Y lg
¢ ¢

+ =    (A.6) 

 
By substituting (A.3) and (A.6): 

 

 sinh
1 cosh

2
Y Z lc l

g
g

¢
+ =  (A.7) 

 
1 cosh 1

2 sinh
Y l

Z lc

g
g

¢ -
=  (A.8) 

 
1 tanh

2 2
Y l

Zc

g¢
=  (A.9) 

 
tanh( )2

2 2
2

l
Y Y

l

g

g
¢
=   (A.10) 

 
where Y is equal to yl, the total shunt admittance of line. 
The correction factor is used to convert the nominal 
lumped parameter to equivalent lumped parameter. 

Therefore, by substituting (A.3) and (A.10) into equation 
6, the finalized equation, taking into account the charging 
current and non-homogenous TL is represented as the 
following: 

 

0

0

2

tanh( )sinh 2 2
2

2

tanh( )2
2

2

L

l l CR
R

l l CL

t t
Vdt

t T t T

lt t tl YRl idt Vdtll t T t T t T

lt YLl idt Vlt T

g w

g w

g
g

gg

g

g

=

=

=

=

=ò ò
- -

é ù
ê ú-ò ò òê ú- - -ê úë û

é ù
ê ú+ -òê ú-ê úë û

(A.11) 

 
 

APPENDIX B 
 
The test system parameters are listed as the following 

[15]: 

Table B1. Test system parameters 

  Pos. & Neg. seq. Zero seq. 
 R (Ω/km) 0.3317 0.4817 

OHL L (mH/km) 1.326 4.595 
 C (μF/km) 0.008688 0.004762 
 R (Ω/km) 0.024 0.412 

UGC L (mH/km) 0.4278 1.5338 
 C (μF/km) 0.2811 0.1529 

Voltage: 220 kV and frequency: 50 Hz 
Length: OHL 100 km and UGC 10 km 
Short circuit level: 500MVA 
PLoad: 380 MW with PF: 0.8 
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