• Title/Summary/Keyword: Combined Forecast

Search Result 84, Processing Time 0.032 seconds

Prediction on the Economic Activity Level of the Elderly in South Korea - Focusing on Machine Learning Method Combined with Forecast Combination - (우리나라 고령층의 경제활동 수준 예측 - 머신러닝 기법과 연계한 예측조합법을 중심으로 -)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.237-247
    • /
    • 2022
  • This study predicts the economic activity level of the elderly in Korea using various machine learning methods. While the previous studies mainly focused on testing the relationship between the economic activity level and the life satisfaction or the social security system, this study aims at the accurate prediction on the economic activity level of the elderly using various machine learning methods and the forecast combination. Dependent variables such as the activity rate, employment rate, etc and independent variables such as the income, average wage, etc compose the dataset in this study. Five different machine learning methods and two forecast combinations are applied to the given dataset. The prediction performances of the machine learning method and the forecast combination varied across the dependent variables and prediction intervals, but it was found that the forecast combination was relatively superior to other methods in terms of the stability of prediction. This study has significance in that it accurately predicted the economic activity level of the elderly and achieved the stability of the prediction, raising practicality from a policy perspective.

Development of Drought Monitoring System: II. Quantitative Drought Monitoring and Drought Outlook Methodology (가뭄모니터링 시스템 구축: II. 정량적 가뭄 모니터링 및 가뭄전망기법 개발)

  • Lee Joo-Heon;Jeong Sang-Man;Kim Jea-Han;Ko Yang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.801-812
    • /
    • 2006
  • In this study, Combined Drought Index which can monitor the drought severity and intensity has been developed using PDSI, SPI and MSWSI. To verify the accuracy and applicability of combined drought index, Drought map of Korea using the combined drought index has compared with past drought event. Drought map using the combined drought index shows good accordance with past drought event and accurate quantitative drought monitoring results. Also the drought outlook technique has been developed using the weather forecast data of Korea Meteorological Administration (KMA). Drought outlook technique of this study can be used effectively as a primitive stage tool for real time drought forecast. As a result of this study, Integrated drought monitoring system has been developed which has capabilities of producing and generating the drought monitoring map and drought outlook map as well as various kinds of drought related information.

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

Hybrid Model Approach to the Complexity of Stock Trading Decisions in Turkey

  • CALISKAN CAVDAR, Seyma;AYDIN, Alev Dilek
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.9-21
    • /
    • 2020
  • The aim of this paper is to predict the Borsa Istanbul (BIST) 30 index movements to determine the most accurate buy and sell decisions using the methods of Artificial Neural Networks (ANN) and Genetic Algorithm (GA). We combined these two methods to obtain a hybrid intelligence method, which we apply. In the financial markets, over 100 technical indicators can be used. However, several of them are preferred by analysts. In this study, we employed nine of these technical indicators. They are moving average convergence divergence (MACD), relative strength index (RSI), commodity channel index (CCI), momentum, directional movement index (DMI), stochastic oscillator, on-balance volume (OBV), average directional movement index (ADX), and simple moving averages (3-day moving average, 5-day moving average, 10-day moving average, 14-day moving average, 20-day moving average, 22-day moving average, 50-day moving average, 100-day moving average, 200-day moving average). In this regard, we combined these two techniques and obtained a hybrid intelligence method. By applying this hybrid model to each of these indicators, we forecast the movements of the Borsa Istanbul (BIST) 30 index. The experimental result indicates that our best proposed hybrid model has a successful forecast rate of 75%, which is higher than the single ANN or GA forecasting models.

Nonlinearities and Forecasting in the Economic Time Series

  • Lee, Woo-Rhee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.931-954
    • /
    • 2003
  • It is widely recognized that economic time series involved not only the linearities but also the non-linearities. In this paper, when the economic time series data have the nonlinear characteristics we propose the forecasts method using combinations of both forecasts from linear and nonlinear models. In empirical study, we compare the forecasting performance of 4 exchange rates models(AR, GARCH, AR+GARCH, Bilinear model) and combination of these forecasts for dairly Won/Dollar exchange rates returns. The combination method is selected by the estimated individual forecast errors using Monte Carlo simulations. And this study shows that the combined forecasts using unrestricted least squares method is performed substantially better than any other combined forecasts or individual forecasts.

Effect of Urbanization on Rainfall Events during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간 강수 사례들에서 나타나는 도시화 효과)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.219-232
    • /
    • 2012
  • The intensive observation (ProbeX-2010) was performed to investigate an urban effect on summer rainfall over the Seoul metropolitan area from 13 August to 3 September 2010. Two kinds of urban effect were detected. First, weak rainfall (${\leq}1\;mm\;hr^{-1}$) was observed more frequently in the downwind area of Seoul than any other area of the country. The high frequency of weak rainfall in the downwind area was also confirmed from the recent five years of observational data (2006-2010). Because the high frequency was more apparent in mountainous regions during nighttime, the weak rainfall seems to be caused by a combined effect of urbanization and topography. Second, sporadically, a convective system was developed rapidly in the downwind area of Seoul, causing heavy rainfall (${\geq}10\;mm\;hr^{-1}$). It can be most clearly seen in series of radar images around 1300-1500 KST 27 August 2010. We investigated in detail the synoptic and local weather and upper air conditions. As a result, not only urban-induced high sensible heat but also conditionally unstable atmosphere (especially unstable in low level) and low level moisture were pointed out as important factors that contributed to urban-induced heavy rainfall.

Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst (애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석)

  • Kim, Sun-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.199-207
    • /
    • 2019
  • This study aims to analyze the profitability of Robo-Advisors portfolio combined with the analysts' forecasts on the Korean stock prices. Sample stocks are 8 blue-chips and sample period is from 2003 to 2019. Robo-Advisor portfolio was suggested using the Black-Litterman model combined with the analysts' forecasts and its profitability was analyzed. Empirical result showed the suggested Robo-Advisor algorithm produced 1% annual excess return more than that of the benchmark. The study documented that the analysts' forecasts had an economic value when applied in the Robo-Advisor portfolio despite the prevalent blames from investors. The profitability on small or medium-sized stocks will need to be analyzed in the Robo-Advisor context because their information is relatively less known to investors and as such is expected to be strongly influenced by the analysts' forecasts.

Reliability Evaluation considering Fuzzy-based Uncertainty of Peak Load Forecast (피크 부하의 불확실성을 고려한 전력계통의 신뢰도 산출)

  • Kim, Dong-Min;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.111-112
    • /
    • 2008
  • Although two types of uncertainty such as randomness and fuzziness simultaneously exist in power systems, yet they have been treated as distinct fields to evaluate the power system reliability. Thus, this paper presents a reliability assessment method based on a combined concept of fuzzy and probability. To reflect the two-fold uncertainty, a modified load duration curve(MLDC) is proposed using the probability distribution of historical load data in which a fuzzy model for the peak load forecast is embedded. IEEE RTS system was used to demonstrate the usefulness and applicability of the proposed method, and the reliability indices were obtained using the proposed MLDC. The results show a wider insight into impact of load fuzziness on uncertainties of reliability indices for power systems.

  • PDF

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

Drought index forecast using ensemble learning (앙상블 기법을 이용한 가뭄지수 예측)

  • Jeong, Jihyeon;Cha, Sanghun;Kim, Myojeong;Kim, Gwangseob;Lim, Yoon-Jin;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1125-1132
    • /
    • 2017
  • In a situation where the severity and frequency of drought events getting stronger and higher, many studies related to drought forecast have been conducted to improve the drought forecast accuracy. However it is difficult to predict drought events using a single model because of nonlinear and complicated characteristics of temporal behavior of drought events. In this study, in order to overcome the shortcomings of the single model approach, we first build various single models capable to explain the relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and other independent variables such as world climate indices. Then, we developed a combined models using Stochastic Gradient Descent method among Ensemble Learnings.