DOI QR코드

DOI QR Code

Effect of Urbanization on Rainfall Events during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area

2010년 여름철 수도권 집중관측기간 강수 사례들에서 나타나는 도시화 효과

  • Kim, Do-Woo (Multi-Hazard Research Division, National Disaster Management Institute) ;
  • Kim, Yeon-Hee (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Ki-Hoon (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Shin, Seung-Sook (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Dong-Kyun (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Hwang, Yoon-Jeong (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Park, Jong-Im (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Choi, Da-Young (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Yong-Hee (Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration)
  • 김도우 (국립방재연구원 복합재난연구실) ;
  • 김연희 (기상청 국립기상연구소 예보연구과) ;
  • 김기훈 (기상청 국립기상연구소 예보연구과) ;
  • 신승숙 (기상청 국립기상연구소 예보연구과) ;
  • 김동균 (기상청 국립기상연구소 예보연구과) ;
  • 황윤정 (기상청 국립기상연구소 예보연구과) ;
  • 박종임 (기상청 국립기상연구소 예보연구과) ;
  • 최다영 (기상청 국립기상연구소 예보연구과) ;
  • 이용희 (기상청 국립기상연구소 예보연구과)
  • Received : 2012.03.09
  • Accepted : 2012.05.27
  • Published : 2012.06.30

Abstract

The intensive observation (ProbeX-2010) was performed to investigate an urban effect on summer rainfall over the Seoul metropolitan area from 13 August to 3 September 2010. Two kinds of urban effect were detected. First, weak rainfall (${\leq}1\;mm\;hr^{-1}$) was observed more frequently in the downwind area of Seoul than any other area of the country. The high frequency of weak rainfall in the downwind area was also confirmed from the recent five years of observational data (2006-2010). Because the high frequency was more apparent in mountainous regions during nighttime, the weak rainfall seems to be caused by a combined effect of urbanization and topography. Second, sporadically, a convective system was developed rapidly in the downwind area of Seoul, causing heavy rainfall (${\geq}10\;mm\;hr^{-1}$). It can be most clearly seen in series of radar images around 1300-1500 KST 27 August 2010. We investigated in detail the synoptic and local weather and upper air conditions. As a result, not only urban-induced high sensible heat but also conditionally unstable atmosphere (especially unstable in low level) and low level moisture were pointed out as important factors that contributed to urban-induced heavy rainfall.

도시화 효과가 여름 강수에 미치는 영향을 분석하기 위해 2010년 8월 13일부터 9월 3일까지 수도권 집중관측(ProbeX-2010)을 수행하였다. 분석 결과, 다음의 두 가지 현상들이 발견되었다. 첫째, 관측 기간 동안 약한 강수(${\leq}1\;mm\;hr^{-1}$)가 다른 지역보다 서울 풍하측 지역에서 더 자주 발생하였으며, 이는 최근 5년(2006-2010) 자료에서도 확인되었다. 약한 강수는 주로 서울 풍하측 산악 지역에서 야간에 더 자주 발생하였기 때문에 이는 도시지형 뿐만 아니라 산악 지형의 복합적인 효과로 여겨진다. 둘째, 간헐적으로 대류 시스템이 서울 풍하측에서 급격하게 발달해 호우를 야기했다. 이는 특히 8월 27일 1300-1500 KST의 일련의 레이더 영상에서 뚜렷하게 확인되었다. 본 연구에서는 이 강수 사례에 대한 종관 국지적 날씨 특성과 고층 대기 특성을 자세히 분석하였다. 그 결과 도시지형과 연관된 지표 현열 증가뿐만 아니라 조건부 불안정 대기 상태(특히 대기 하층)와 대기 하층의 습기 유입이 도시화 효과와 연관된 대류성 호우를 야기하는 중요한 요소로 제시되었다.

Keywords

References

  1. 김연희, 구해정, 남재철, 2005, 서울지역 강우 특성 분석을 통한 도시화 영향 평가. 서울도시연구, 6, 165-183.
  2. 김연희, 최다영, 장동언, 2011, 수도권 지역의 도시 기상 특성. 한국기상학회 대기지, 21, 257-271.
  3. 은승희, 채상희, 김병곤, 장기호, 2011, 한반도 중부지역에서 약한 강수에 미치는 도시화 효과. 한국기상학회 대기지, 21, 229-241.
  4. 최기선, 강기룡, 김도우, 김태룡, 2009, 인공신경망 기법을 이용한 태풍 강도 및 진로 예측. 한국지구과학회지, 30, 174-182.
  5. 최기선, 차유미, 김태룡, 2012, 한반도에 상륙한 태풍 빈도수의 십년간 변동 특성. 한국지구과학회지, 33, 59-68.
  6. 황호성, 변희룡, 이상민, 최기선, 이지선, 2010, 태풍의 약화와 관련된 한국의 강수량 분포. 한국지구과학회지, 31, 322-334. https://doi.org/10.5467/JKESS.2010.31.4.322
  7. Baik, J.J., Kim, Y.H., and Chun, H.Y., 2001, Dry and moist convection forced by an urban heat island. Journal of Applied Meteorology, 40, 1462-1475. https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
  8. Balling, R. and Brazel, S., 1987, Recent changes in Phoenix summertime diurnal precipitation patterns. Theoretical Applied Climatology, 38, 50-54. https://doi.org/10.1007/BF00866253
  9. Bornstein R. and Lin, Q., 2000, Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmospheric Environment, 34, 507-516. https://doi.org/10.1016/S1352-2310(99)00374-X
  10. Braham, R.R., Semonin, R.G., Auer, A.H., Changnon Jr, S.A., and Hales, J.M., 1981, Summary of urban effects on clouds and rain. METROMEX: A Review and Summary, Meteorological Monographs, No. 40, American Meteorological Society, 141-152.
  11. Changnon, S.A., 1968, The LaPorte weather anomaly-Fact or fiction? Bulletin of the American Meteorological Society, 49, 4-11.
  12. Changnon, S.A., 1979, Rainfall changes in summer caused by St. Louis. Science, 205, 402-404. https://doi.org/10.1126/science.205.4404.402
  13. Changnon, S.A., Semonin, R.G., Auer, A.H., Braham, R.R., and Hales, J., 1981, METROMEX: A Review and Summary. Meteorological Monographs, No. 40, American Meteorological Society, 81 p.
  14. Changnon, S.A., Shealy, R.T., and Scott, R.W., 1991, Precipitation changes in fall, winter, and spring caused by St. Louis. Journal of Applied Meteorology, 30, 126- 134. https://doi.org/10.1175/1520-0450(1991)030<0126:PCIFWA>2.0.CO;2
  15. Changnon, S.A. and Westcott, N.E., 2002, Heavy rainstorms in Chicago: Increasing frequency, altered impacts, and future implications. Journal of the American Water Resources Association, 38, 1467-1475. https://doi.org/10.1111/j.1752-1688.2002.tb04359.x
  16. Dixon, P.G. and Mote, T.L., 2003, Patterns and causes of Atlanta's urban heat island-initiated precipitation. Journal of Applied Meteorology, 42, 1273-1284. https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2
  17. Fujibe, F., 2003, Long-term surface wind changes in the Tokyo Metropolitan area in the afternoon of sunny days in the warm season. Journal of the Meteorological Society of Japan, 81, 141-149. https://doi.org/10.2151/jmsj.81.141
  18. Huff, F.A. and Changnon, S.A., 1973, Precipitation modification of major urban areas. Bulletin of the American Meteorological Society, 54, 1220-1232. https://doi.org/10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2
  19. Huff, F.A. and Vogel, J.L., 1978, Urban, topographic and diurnal effects on rainfall in the St. Louis region. Journal of Applied Meteorology, 17, 565-577. https://doi.org/10.1175/1520-0450(1978)017<0565:UTADEO>2.0.CO;2
  20. Hughes, K., 2006, The impact of urban areas on climate in the UK: A spatial and temporal analysis, with an emphasis on temperature and precipitation effects. Earth and Environment, 2, 54-83.
  21. Jauregui, E. and Romales, E., 1996, Urban effects on convective precipitation in Mexico City. Atmospheric Environment, 30, 3383-3389. https://doi.org/10.1016/1352-2310(96)00041-6
  22. Kar, S.K., Liou, Y.A., and Ha, K.J., 2009, Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmospheric Research, 92, 80-87. https://doi.org/10.1016/j.atmosres.2008.09.004
  23. Kim, Y.H. and Baik, J.J., 2002, Maximum urban heat island intensity in Seoul. Journal of Applied Meteorology, 41, 651-659. https://doi.org/10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2
  24. Kim, Y.H. and Baik, J.J., 2004, Daily maximum urban heat island intensity in large cities of Korea. Theoretical Applied Climatology, 79, 151-164. https://doi.org/10.1007/s00704-004-0070-7
  25. Kim, Y.H. and Baik, J.J., 2005, Spatial and Temporal Structure of the Urban Heat Island in Seoul. Journal of Applied Meteorology, 44, 593-605.
  26. Kishtawal, C., Niyogi, D., Tewari, M., Pielke Sr, R.A., Shepherd, M., 2009, Urbanization Signature in the Observed Heavy Rainfall Climatology over India. The International Journal of Climatology, doi:10.1002/joc.2044.
  27. Oke, T.R., 1987, Boundary Layer Climates. 2nd ed. Routledge, 435 p.
  28. Orville, R., Huffines, G., Nielsen-Gammon, J., Zhang, R., Ely, B., Steiger, S., Phillips, S., Allen, S., and Read, W., 2001, Enhancement of cloud-to-ground lightning over Houston Texas. Geophysical Research Letter, 28, 2597-2600. https://doi.org/10.1029/2001GL012990
  29. Selover, N., 1997, Precipitation patterns around an urban desert environment topographic or urban influences? Proc. Association of American Geographers Convention, Fort Worth, TX, Association of American Geographers.
  30. Takahashi, H., 2003, Secular variation in the occurrence property of summertime daily rainfall amount in and around the Tokyo Metropolitan area. Tenki, 50, 31-41.
  31. Yin, S., Li, W., Chen, D., Jeong, J.H., and Guo, W., 2011, Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Advances in Atmospheric Sciences, 28, 725-734. https://doi.org/10.1007/s00376-010-9240-y

Cited by

  1. Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012 vol.23, pp.2, 2013, https://doi.org/10.14191/Atmos.2013.23.2.187
  2. Relationship between rainfall in Korea and Antarctic Oscillation in June vol.34, pp.2, 2013, https://doi.org/10.5467/JKESS.2013.34.2.136
  3. Urban impacts on precipitation vol.50, pp.1, 2014, https://doi.org/10.1007/s13143-014-0016-7