• Title/Summary/Keyword: Colonic Microbiota

Search Result 14, Processing Time 0.031 seconds

The Differences between Luminal Microbiota and Mucosal Microbiota in Mice

  • Wu, Minna;Li, Puze;Li, Jianmin;An, Yunying;Wang, Mingyong;Zhong, Genshen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • The differences between luminal microbiota (LM) and mucosal microbiota (MAM) were little known, especially in duodenum. In this study, LM and MAM in colon and duodenum of mice were investigated through 16S rRNA high-throughput sequencing. The lowest bacterial diversity and evenness were observed in duodenal LM (D_LM), followed by duodenal MAM (D_MAM). Meanwhile, the bacterial diversity and evenness were obviously increased in D_MAM than these in D_LM, while no significant difference was observed between colonic MAM (C_MAM) and colonic LM (C_LM). PCoA analysis also showed that bacterial communities of LM and MAM in duodenum were completely separated, while these in colon overlapped partly. The ratio of Firmicutes to Bacteroidetes (F/B) in D_MAM was significantly higher than that in D_LM. Lactobacillus was largely enriched and was the characteristic bacteria in D_LM. The characteristic bacteria in D_MAM were Turicibacter, Parasutterella, Marvinbryantia and Bifidobacterium, while in C_LM they were Ruminiclostridium_6, Ruminiclostridium_9, Ruminococcaceae_UCG_007 and Lachnospiraceae_UCG_010, and in C_MAM they were Lachnospiraceae_NK4A136, Mucispirillum, Alistipes, Ruminiclostridium and Odoribacter. The networks showed that more interactions existed in colonic microbiota (24 nodes and 74 edges) than in duodenal microbiota (17 nodes and 29 edges). The 16S rDNA function prediction results indicated that bigger differences of function exist between LM and MAM in duodenum than these in colon. In conclusion, microbiota from intestinal luminal content and mucosa were different both in colon and in duodenum, and bacteria in colon interacted with each other much more closely than those in duodenum.

Effect of Chlorella vulgaris on gut microbiota through a simulated in vitro digestion process

  • Jin, Jong Beom;Cha, Jin Wook;Shin, Il-Shik;Jeon, Jin Young;An, Hye Suck;Cha, Kwang Hyun;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • The diet plays a fundamental role in the formation of the gut microbiota, determining the interrelationship between the gut microbiota and the host. The current study investigated the effect of Chlorella vulgaris on the gut microbiota by using simulated in vitro digestion and colonic fermentation. Bioaccessibility was measured after in vitro digestion, and SCFAs and microbial profiling were analyzed after colonic fermentation. The bioaccessibility of C. vulgaris was 0.24 g/g. The three major SCFAs (acetate, propionate, and butyrate) increased significantly when compared to the control group. In microbial profiling analysis, microorganisms such as Faecalibacterium, Dialister, Megasphaera, Dorea, Odoribacter, Roseburia, Bifidobacterium, Butyricmonas, and Veillonella were high in C. vulgaris group. Among them, Faecalibacterium, Dialister, Megasphaera, Roseburia, and Veillonella were thought to be closely associated with the increased level of SCFAs. Finally, it can be expected to help improve gut microbiota and health through ingestion of C. vulgaris. However, further studies are vital to confirm the changes in the gut microbiota in in vivo, when C. vulgaris is ingested.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice

  • Yoon-Jung Shin;Dong-Yun Lee;Joo Yun Kim;Keon Heo;Jae-Jung Shim;Jung-Lyoul Lee;Dong-Hyun Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.255-264
    • /
    • 2023
  • Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

Effect of increasing levels of rice distillers' by-product on growth performance, nutrient digestibility, blood profile and colonic microbiota of weaned piglets

  • Cong, Oanh Nguyen;Taminiau, Bernard;Kim, Dang Pham;Daube, Georges;Van, Giap Nguyen;Bindelle, Jerome;Fall, Papa Abdulaye;Dinh, Ton Vu;Hornick, Jean-Luc
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.788-801
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effects of diets containing different wet rice distillers' by-product (RDP) levels on growth performance, nutrient digestibility, blood profiles and gut microbiome of weaned piglets. Methods: A total of 48 weaned castrated male crossbred pigs, initial body weight 7.54±0.97 kg, and age about 4 wks, were used in this experiment. The piglets were randomly allocated into three iso-nitrogenous diet groups that were fed either a control diet, a diet with 15% RDP, or a diet with 30% RDP for a total of 35 days. Chromium oxide was used for apparent digestibility measurements. On d 14 and d 35, half of the piglets were randomly selected for hemato-biochemical and gut microbiota evaluations. Results: Increasing inclusion levels of RDP tended to linearly increase (p≤0.07) average daily gain on d 14 and d 35, and decreased (p = 0.08) feed conversion ratio on d 35. Empty stomach weight increased (p = 0.03) on d 35 while digestibility of diet components decreased. Serum globulin concentration decreased on d 14 (p = 0.003) and red blood cell count tended to decrease (p = 0.06) on d 35, parallel to increase RDP levels. Gene amplicon profiling of 16S rRNA revealed that the colonic microbiota composition of weaned pigs changed by inclusion of RDP over the period. On d 14, decreased proportions of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge, and increased proportions of Prevotellaceae_ge, Prevotella_2, and Prevotella_9 were found with inclusion of RDP, whereas opposite effect was found on d 35. Additionally, the proportion of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge in RDP diets decreased over periods in control diet but increased largely in diet with 30% RDP. Conclusion: These results indicate that RDP in a favorable way modulate gastrointestinal microbiota composition and improve piglet performance despite a negative impact on digestibility of lipids and gross energy.

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

Development of Gut Microbiota in a Mouse Model of Ovalbumin-induced Allergic Diarrhea under Sub-barrier System

  • Wang, Juan-Hong;Fan, Song-Wei;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.545-551
    • /
    • 2013
  • This study aimed to present a mouse model of ovalbumin (OVA) induced allergic diarrhea under a sub-barrier system and investigate the development of gut microbiota in this model. Male BALB/c mice were systemically sensitized with OVA or sham-sensitized with saline, and followed by oral OVA intubation, leading to OVA-specific acute diarrhea. Compared with sham-sensitized mice, sera OVA-specific IgG1 and total IgE in OVA-sensitized mice were dramatically elevated, and the number of mast cells was greatly increased in the jejunum of the OVA-sensitized mice. Principle component analysis of the DGGE profile showed that samples from group of OVA-sensitized mice and group of sham-sensitized mice were scattered into two different regions. Real-time PCR analysis showed that the number of 16S rRNA gene copies of Lactobacillus in the colon of OVA-sensitized mice decreased significantly, while there was no significant difference in the number of Bifidobacterium and total bacteria. In conclusion, OVA-specific allergic diarrhea was successfully induced under a sub-barrier system, and changes of allergic reactions during induction was coupled with changes in gut microbiota, especially the number of colonic Lactobacillus, but the role of gut microbiota in the development of food allergic reactions needs to be further evaluated.

Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer

  • Kim, Kwangmin;Castro, Ernes John T.;Shim, Hongjin;Advincula, John Vincent G.;Kim, Young-Wan
    • Annals of Coloproctology
    • /
    • v.34 no.6
    • /
    • pp.280-285
    • /
    • 2018
  • For many years, developmental and physiological differences have been known to exist between anatomic segments of the colorectum. Because of different outcomes, prognoses, and clinical responses to chemotherapy, the distinction between right colon cancer (RCC) and left colon cancer (LCC) has gained attention. Furthermore, variations in the molecular features and gut microbiota between right and LCCs have recently been a hot research topic. CpG island methylator phenotype-high, microsatellite instability-high colorectal cancers are more likely to occur on the right side whereas tumors with chromosomal instability have been detected in approximately 75% of LCC patients and 30% of RCC patients. The mutation rates of oncogenes and tumor suppressor genes also differ between RCC and LCC patients. Biofilm is more abundant in RCC patients than LLC patients, as are Prevotella, Selenomonas, and Peptostreptococcus. Conversely, Fusobacterium, Escherichia/Shigella, and Leptotrichia are more abundant in LCC patients compared to RCC patients. Distinctive characteristics are apparent in terms of molecular features and gut microbiota between right and LCC. However, how or to what extent these differences influence diverging oncologic outcomes remains unclear. Further clinical and translational studies are needed to elucidate the causative relationship between primary tumor location and prognosis.

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice

  • Jeon, Hee-Jin;Yeom, Yiseul;Kim, Yoo-Sun;Kim, Eunju;Shin, Jae-Ho;Seok, Pu Reum;Woo, Moon Jea;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • BACKGROUD/OBJECTIVES: The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. MATERIALS/METHODS: Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. RESULTS: The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis $factor-{\alpha}$, Interleukin $(IL)-1{\beta}$, and IL-6, and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. CONCLUSION: Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted.