Browse > Article
http://dx.doi.org/10.4014/jmb.1205.05018

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model  

Rodes, Laetitia (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Khan, Afshan (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Paul, Arghya (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Coussa-Charley, Michael (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Marinescu, Daniel (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Tomaro-Duchesneau, Catherine (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Shao, Wei (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Kahouli, Imen (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Prakash, Satya (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 518-526 More about this Journal
Abstract
Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.
Keywords
Lactobacilli; bifidobacteria; probiotics; cytokine; lipopolysaccharide; inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Borthakur, A., A. N. Anbazhagan, A. Kumar, G. Raheja, V. Singh, K. Ramaswamy, and P. K. Dudeja. 2010. The probiotic Lactobacillus plantarum counteracts TNF-{alpha}-induced downregulation of SMCT1 expression and function. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G928-G934.   DOI   ScienceOn
2 Alisi, A., M. Manco, R. Devito, F. Piemonte, and V. Nobili. 2010. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 50: 645-649.   DOI   ScienceOn
3 Bahrami, B., M. W. Child, S. Macfarlane, and G. T. Macfarlane. 2011. Adherence and cytokine induction in Caco-2 cells by bacterial populations from a three-stage continuous-culture model of the large intestine. Appl. Environ. Microbiol. 77: 2934- 2942.   DOI   ScienceOn
4 Bispo, P. J., G. B. de Melo, A. L. Hofling-Lima, and A. C. Pignatari. 2011. Detection and Gram discrimination of bacterial pathogens from aqueous and vitreous humor using real-time PCR assays. Invest. Ophthalmol. Vis. Sci. 52: 873-881.   DOI
5 Ewaschuk, J. B., H. Diaz, L. Meddings, B. Diederichs, A. Dmytrash, J. Backer, et al. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G1025-G1034.   DOI   ScienceOn
6 Goris, H., F. de Boer, and D. van der Waaij. 1985. Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect. Immun. 50: 437-441.
7 Forsyth, C. B., A. Farhadi, S. M. Jakate, Y. Tang, M. Shaikh, and A. Keshavarzian. 2009. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43: 163-172.   DOI   ScienceOn
8 Gordon, S. 2007. The macrophage: Past, present and future. Eur. J. Immunol. 37 (Suppl 1): S9-S17.   DOI   ScienceOn
9 Goris, H., S. Daenen, M. R. Halie, and D. van der Waaij. 1986. Effect of intestinal flora modulation by oral polymyxin treatment on hemopoietic stem cell kinetics in mice. Acta Haematol. 76: 44-49.   DOI
10 Gosselink, M. P., W. R. Schouten, L. M. van Lieshout, W. C. Hop, J. D. Laman, and J. G. Ruseler-Van Embden. 2004. Delay of the first onset of pouchitis by oral intake of the probiotic strain Lactobacillus rhamnosus GG. Dis. Colon Rectum 47: 876-884.   DOI   ScienceOn
11 Grimm, M. C., W. E. Pullman, G. M. Bennett, P. J. Sullivan, P. Pavli, and W. F. Doe. 1995. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J. Gastroenterol. Hepatol. 10: 387-395.   DOI   ScienceOn
12 Kamada, N., T. Hisamatsu, S. Okamoto, H. Chinen, T. Kobayashi, T. Sato, et al. 2008. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFNgamma axis. J. Clin. Invest. 118: 2269-2280.
13 Karimi, K., M. D. Inman, J. Bienenstock, and P. Forsythe. 2009. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179: 186-193.   DOI   ScienceOn
14 Larsen, N., F. K. Vogensen, F. W. van den Berg, D. S. Nielsen, A. S. Andreasen, B. K. Pedersen, et al. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5: e9085.   DOI   ScienceOn
15 Leeson, M. C., Y. Fujihara, and D. C. Morrison. 1994. Evidence for lipopolysaccharide as the predominant proinflammatory mediator in supernatants of antibiotic-treated bacteria. Infect. Immun. 62: 4975-4980.
16 Kawai, T. and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637-650.   DOI   ScienceOn
17 Kim, D. W., S. B. Cho, H. J. Lee, W. T. Chung, K. H. Kim, J. Hwangbo, et al. 2007. Comparison of cytokine and nitric oxide induction in murine macrophages between whole cell and enzymatically digested Bifidobacterium sp. obtained from monogastric animals. J. Microbiol. 45: 305-310.
18 Lopez, P., M. Gueimonde, A. Margolles, and A. Suarez. 2010. Distinct Bifidobacterium strains drive different immune responses in vitro. Int. J. Food Microbiol. 138: 157-165.   DOI   ScienceOn
19 Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151.   DOI   ScienceOn
20 Ma, D., P. Forsythe, and J. Bienenstock. 2004. Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect. Immun. 72: 5308-5314.   DOI   ScienceOn
21 Madsen, K. L., J. S. Doyle, L. D. Jewell, M. M. Tavernini, and R. N. Fedorak. 1999. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116: 1107- 1114.   DOI   ScienceOn
22 Mutlu, E., A. Keshavarzian, P. Engen, C. B. Forsyth, M. Sikaroodi, and P. Gillevet. 2009. Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin. Exp. Res. 33: 1836-1846.   DOI   ScienceOn
23 O'Mahony, C., P. Scully, D. O'Mahony, S. Murphy, F. O'Brien, A. Lyons, et al. 2008. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog. 4: e1000112.   DOI   ScienceOn
24 Maitra, U., H. Deng, T. Glaros, B. Baker, D. G. Capelluto, Z. Li, and L. Li. 2012. Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J. Immunol. 189: 1014-1023.   DOI
25 Mao, Y., S. Nobaek, B. Kasravi, D. Adawi, U. Stenram, G. Molin, and B. Jeppsson. 1996. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111: 334-344.   DOI   ScienceOn
26 Mehta, N. N., F. C. McGillicuddy, P. D. Anderson, C. C. Hinkle, R. Shah, L. Pruscino, et al. 2010. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59: 172-181.   DOI   ScienceOn
27 Pena, J. A., A. B. Rogers, Z. Ge, V. Ng, S. Y. Li, J. G. Fox, and J. Versalovic. 2005. Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect. Immun. 73: 912-920.   DOI   ScienceOn
28 Prakash, S., L. Rodes, M. Coussa-Charley, and C. Tomaro- Duchesneau. 2011. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics 5: 71-86.
29 Schultz, M., C. Veltkamp, L. A. Dieleman, W. B. Grenther, P. B. Wyrick, S. L. Tonkonogy, and R. B. Sartor. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel Dis. 8: 71-80.
30 Rodes, L., A. Paul, M. Coussa-Charley, H. Al-Salami, C. Tomaro-Duchesneau, M. Fakhoury, and S. Prakash. 2011. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia. Artif. Cells Blood Substit. Immobil. Biotechnol. 39: 351-356.   DOI   ScienceOn
31 Cani, P. D., A. M. Neyrinck, F. Fava, C. Knauf, R. G. Burcelin, K. M. Tuohy, et al. 2007. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374-2383.   DOI   ScienceOn
32 Zeuthen, L. H., H. R. Christensen, and H. Frokiaer. 2006. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with Gramnegative bacteria. Clin. Vaccine Immunol. 13: 365-375.   DOI   ScienceOn
33 Zhang, W., Y. Gu, Y. Chen, H. Deng, L. Chen, S. Chen, G. Zhang, and Z. Gao. 2010. Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis. Eur. J. Gastroenterol. Hepatol. 22: 1481-1486.
34 Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761-1772.   DOI   ScienceOn
35 Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57: 1470-1481.   DOI   ScienceOn
36 Chon, H. and B. Choi. 2010. The effects of a vegetable-derived probiotic lactic acid bacterium on the immune response. Microbiol. Immunol. 54: 228-236.   DOI   ScienceOn
37 Cani, P. D., S. Possemiers, T. Van de Wiele, Y. Guiot, A. Everard, O. Rottier, et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58: 1091-1103.   DOI   ScienceOn
38 Chawla, A., K. D. Nguyen, and Y. P. Goh. 2011. Macrophagemediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738-749.   DOI   ScienceOn
39 Chon, H., B. Choi, E. Lee, S. Lee, and G. Jeong. 2009. Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. J. Appl. Microbiol. 107: 1588-1597.   DOI   ScienceOn
40 Coombes, J. L. and F. Powrie. 2008. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8: 435-446.   DOI   ScienceOn
41 De, P. G., J. Cinova, R. Stepankova, L. Tuckova, and Y. Sanz. 2009. Pivotal advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J. Leukoc. Biol. 87: 765-778.
42 Smith, P. D., L. E. Smythies, R. Shen, T. Greenwell-Wild, M. Gliozzi, and S. M. Wahl. 2011. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 4: 31-42.   DOI   ScienceOn
43 Roselli, M., A. Finamore, M. S. Britti, and E. Mengheri. 2006. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br. J. Nutr. 95: 1177-1184.   DOI   ScienceOn
44 Schiffrin, E. J., A. Parlesak, C. Bode, J. C. Bode, M. A. van't Hof, D. Grathwohl, and Y. Guigoz. 2009. Probiotic yogurt in the elderly with intestinal bacterial overgrowth: Endotoxaemia and innate immune functions. Br. J. Nutr. 101: 961-966.   DOI   ScienceOn
45 Smith, P. D., L. E. Smythies, M. Mosteller-Barnum, D. A. Sibley, M. W. Russell, M. Merger, et al. 2001. Intestinal macrophages lack CD14 and CD89 and consequently are downregulated for LPS- and IgA-mediated activities. J. Immunol. 167: 2651-2656.
46 Smythies, L. E., M. Sellers, R. H. Clements, M. Mosteller- Barnum, G. Meng, W. H. Benjamin, et al. 2005. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115: 66-75.   DOI
47 Xia, Y., H. Q. Chen, M. Zhang, Y. Q. Jiang, X. M. Hang, and H. L. Qin. 2011. Effect of Lactobacillus plantarum LP-Onlly on gut flora and colitis in interleukin-10 knockout mice. J. Gastroenterol. Hepatol. 26: 405-411.   DOI   ScienceOn
48 Stagg, A. J., A. L. Hart, S. C. Knight, and M. A. Kamm. 2003. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut 52: 1522-1529.   DOI   ScienceOn
49 Turnbaugh, P. J., M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484.   DOI   ScienceOn
50 Veiga, P., C. A. Gallini, C. Beal, M. Michaud, M. L. Delaney, A. DuBois, et al. 2010. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 107: 18132-18137.   DOI   ScienceOn