• Title/Summary/Keyword: Collision estimation

Search Result 165, Processing Time 0.029 seconds

Improving performance with Initial number of tag estimation scheme for the RFID System (초기 태그 수 추정 기법을 이용한 RFID 시스템의 성능 향상)

  • Yang, Seong-Ryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2643-2648
    • /
    • 2012
  • In the RFID Sytem, When leaders recognize the tag, a anti-collision scheme is an important factor in the performance of the system. Probabilistic-based anti-collision scheme using the slot status is a technique to estimate the number of tags. the schemes to quickly and accurately estimate the number of tags has been a lot of research. However, A initial number tag are not considering in the number of tags unknown environment. In the paper, estimation scheme for the initial number of tag is proposed to solve the problems. we analyze the performance by the initial number of tag and the proposed scheme.

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

Ship Collision Analysis Technique considering Surrounding Water (주변 유체를 고려한 선박 충돌해석 기법 연구)

  • Lee, Sang-Gab;Lee, Jeong-Dae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus (자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발)

  • Lee, Seungmin;Lee, Changhyung;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

A study on the estimation of impact velocity of crashed vehicles in tunnel using computer simulation(PC-CRASH) (컴퓨터 시뮬레이션(PC-CRASH)을 이용한 터널 내 피추돌 차량의 충돌 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Choi, Hong-Ju
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.40-45
    • /
    • 2020
  • In a vehicle-to-vehicle accident, the impact posture, braking status, final stopping position, collision point and collision speed are important factors for accident reconstruction. In particular, the speed of collision is the most important issue. In this study, the collision speed and the final stopping position in the tunnel were estimated using PC-CRASH, a vehicle crash analysis program used for traffic accident analysis, and the final stopping position of the simulation and the final stopping position of the traffic accident report were compared. When the Pride speed was 0km/h or 30km/h and the Sorento speed was 100m/h, the simulation results and reports matched the final stopping positions and posture of the two vehicles. As a result of the simulation, it can be estimated that Pride was collided in an almost stationary state.

On an Algorithm for the Assessment of Collision Risk among Multiple Ships based on AIS (AIS 기반 다중선박 충돌 위험도 추정 알고리즘에 관한 연구)

  • Son, Nam-Sun;Oh, Jae-Yong;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.62-63
    • /
    • 2009
  • A monitoring system of collision risk among multiple ships is newly-designed in order to reduce human error and make vessel traffic control more effective. By using AIS data as ships' navigational information, an estimation algorithm of collision risk among multiple ships is newly-designed. To consider ships' course of now and future, collision risks of multiple ships can be calculated by using fuzzy algorithm. To test the performance of new algorithm, replay simulations are carried out on actual AIS data collected from VTS center of Ulsan harbor in Korea. The AIS data include 25 ships' information for two hours. In this paper, the features of newly-designed estimation algorithm of collision risk and the results of replay simulation are discussed.

  • PDF

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing (무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측)

  • Seongbong Lee;Cheonman Park;Hyeji Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.485-492
    • /
    • 2021
  • Vision-based autonomous precision landing technology for UAVs requires precise position estimation and landing guidance technology. Also, for safe landing, it must be designed to determine the safety of the landing point against ground obstacles and to guide the landing only when the safety is ensured. In this paper, we proposes vision-based navigation, and algorithms for determining the safety of landing point to perform autonomous precision landings. To perform vision-based navigation, CNN technology is used to detect landing pad and the detection information is used to derive an integrated navigation solution. In addition, design and apply Kalman filters to improve position estimation performance. In order to determine the safety of the landing point, we perform the obstacle detection and position estimation in the same manner, and estimate the speed of the obstacle using LSM. The collision or not with the obstacle is determined based on the CPA calculated by using the estimated state of the obstacle. Finally, we perform flight test to verify the proposed algorithm.

DEVELOPMENT OF ROBUST LATERAL COLLISION RISK ASSESSMENT METHOD (측후방 충돌 안전 시스템을 위한 횡방향 충돌 위험 평가 지수 개발)

  • Kim, Kyuwon;Kim, Beomjun;Kim, Dongwook;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • This paper presents a lateral collision risk index between an ego vehicle and a rear-side vehicle. The lateral collision risk is designed to represent a lateral collision risk and provide the appropriate threshold value of activation of the lateral collision management system such as the Blind Spot Detection(BSD). The lateral collision risk index is designed using the Time to Line Crossing(TLC) and the longitudinal collision index at the predicted TLC. TLC and the longitudinal collision index are calculated with the signals from the exterior sensor such as the radar equipped on the rear-side of a vehicle and a vision sensor which detects the distance and time to the lane departure. For the robust situation assessment, the perception of driving environment determining whether the road is straighten or curved should be determined. The relative motion estimation method has been proposed with the road information via the integrated estimator using the environment sensors and vehicle sensor. A lateral collision risk index was composed with the estimated relative motion considering the relative yaw angle. The performance of the proposed lateral collision risk index is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Efficient Anti-collision Method based on Tag Estimation in RFID systems (RFID시스템에서 태그 수 추정을 이용한 효율적인 충돌 회피 기법)

  • Shin, Song-Yong;Hwang, Gyung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.616-619
    • /
    • 2012
  • When multiple Tags transmit their IDs to the Reader, tag identification time is delayed due to collisions. Therefore, to reduce the reader's identification time, an efficient anti-collision technology is needed. In this paper, a new anti-collision method is proposed. The method estimates the number of tags and allocates proper number of slots based on the DFSA. The performance of proposed method is compared with existing methods through extensive simulations.

  • PDF