• Title/Summary/Keyword: Collagen production

Search Result 460, Processing Time 0.023 seconds

Photo-aging regulation effects of newly bred Green ball apple (신품종 그린볼 사과의 광노화인자 조절효과)

  • Lee, Eun-Ho;Lee, Seung-Yeol;Jung, Hee-Young;Kang, In-Kyu;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, extracts from the Green ball apple peel (GBE) and the newly bred green ball apple from Korea showed inhibition effects on photo-aging factor regulation associated with skin aging. To investigate the inhibition effect on photo-aging factor regulation in skin, GBE was treated with UVB to induce photo-aging related factors in CCD986sk fibroblast cells. Photo-aging factor regulation effects showed that GBE inhibited UVB-stimulated matrix metalloproteinase (MMP)-1 and MMP-9 protein synthesis in collagen type I alpha 2 chain (COL1A2), MMP-1, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1 protein expression. The expression of COL1A2 and TIMP-1 protein was significantly increased. The mRNA expression levels of COL1A2, MMP-1, MMP-9, hyaluronan synthase (HAS)2, transforming growth factor (TGF)-β, and TIMP-1 were decreased by GBE. The expression of TIMP-1 and TGF-β, which are regulators involved in matrix metalloproteinase and type I procollagen expression, was found to increase with increasing expression of COL1A2. The expression of HAS2, which is involved in the production of hyaluronic acid, one of the structural proteins constituting the skin, was also confirmed. Therefore, GBE showed excellent efficacy against photo-aging factor regulation and could be used as functional material to prevent and treat skin aging.

Wiryeongtang attenuates diabetic renal dysfunction in human renal mesangial cells (위령탕(胃苓湯) 추출물의 사람 유래 신장 메산지움 세포에서의 당뇨병성 신장 손상 개선 효과)

  • Yoon, Jung Joo;Han, Byung Hyuk;Choi, Eun Sik;NamGung, Seung;Jeong, Da Hye;Kim, Hye Yoom;Ahn, You Mee;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.71-78
    • /
    • 2016
  • Objectives : Diabetic nephropathy is one of the most common chronic complications of diabetes and a leading cause of end-stage renal failure in the world. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis and renal fibrosis. Wiryeongtang (WRT) is a well-known traditional herbal formula as therapeutic agents for chronic edema and dysuresia of renal homeostasis. In the present study, we investigated whether WRT inhibits high glucose (HG)-induced renal dysfunction by TGF-β/Smads signal regulation in cultured mesangial cells.Methods : Inhibitory effect of WRT (10-50 ㎍/ml) on HG-stimulated mesangial cells proliferation and dysfunction were evaluated by [3H]-thymidine incorporation, Western blot, and RT-qPCR.Results : WRT significantly decreased HG-accelerated thymidine incorporation in human renal mesangial cell in a dose-dependent levels. WRT induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, HG enhanced expression of dysfunction biomarker such as collagen IV and CTGF, which was markedly attenuated by WRT. WRT decreased TGF-β1 and Smad-2/Smad-4 expression, whereas increased Smad-7 expression under HG. Furthermore, WRT inhibited HG-induced inflammatory factors level such as ICAM-1 and MCP-1 as well as NF-κB p65 nuclear translocation and intracellular ROS production.Conclusions : These results suggested that WRT may alleviate mesangial proliferation and inflammation possibly involved in renal fibrotic process, further diabetic nephropathy through disturbing TGF-β1/Smad signaling and NF-κB/ROS pathway. Thus, WRT might prove to be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells (PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향)

  • Song, Jeong Eun;Lee, Yujung;Lee, Yun Me;Cho, Sun Ah;Jang, Ji Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.

Cell migration and Anti-inflammatory Effect of Red Ginseng Extracts Fermented with Laetiporus Sulphureus (붉은덕다리버섯 균사체로 발효한 홍삼 배양액의 cell migration 및 항염 효능에 관한 연구)

  • Oh, Seong-Hwa;Choi, Soo-Yeon;Lee, Nu Rim;Lee, Jung No;Kim, Dong-Seok;Lee, Sang-Hwa;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.297-305
    • /
    • 2014
  • Red ginseng (RG) contains specific ginsenosides (Rg2, Rg3) which show various pharmacological effects and absorption rate in the body better than panax ginseng. Therefore many people have been used it for health for a long time. Furthermore, many researchers have been studying its biological activities for a long times because fermentation generates lots of beneficial small molecules good for health. In this study, we fermented red ginseng with mycelium of Leatiporus sulphures var. miniatus for 7 days. As a result, we found that three ginsenosides Rg1, Re and Rb2 were decreased from 0.24, 0.25, 0.16 mg/g to 0.12, 0.1, 0.03 mg/g respectively HPLC analysis. In addition, we studied biological activities of fermented red ginseng (FRG) about skin ageing such as anti-inflammation, cell migration, anti-oxidation, collagen type 1 synthesis, and MMP-1 inhibition activities. As a result, FRG were shown higher anti-inflammatory and cell migration promoting activities than RG. FRG inhibited production of nitric oxide (NO) and mRNA expression of inducible nitric oxide synthase (iNOS) and decreased interleukin (IL)-6 induced by LPS stimulation in RAW 264.7 cells. In conclusion, this study suggest that FRG could be a potential source as a new natural anti-inflammatory agent.

A single-center, randomized, double-blind, placebo-controlled study on the efficacy and safety of "enzyme-treated red ginseng powder complex (BG11001)" for antiwrinkle and proelasticity in individuals with healthy skin

  • Park, Sang-Yong;Shin, Yu-Kyong;Kim, Hee-Taek;Kim, Yong Min;Lee, Don-Gil;Hwang, Eunson;Cho, Byung-Goo;Yin, Chang Shik;Kim, Ki-Young;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.260-268
    • /
    • 2016
  • Background: During the aging process, skin shows visible changes, characterized by a loss of elasticity and the appearance of wrinkles due to reduced collagen production and decreased elasticity of elastin fibers. Panax ginseng Meyer has been used as a traditional medicine for various diseases due to its wide range of biological activities including skin protective effects. Ginsenosides are the main components responsible for the biological activities of ginseng. However, the protective activities of an enzymatic preparation of red ginseng against human skin aging have not been investigated. Methods: The efficacy of an enzyme-treated powder complex of red ginseng (BG11001) in preventing human skin aging was evaluated by oral administration to 78 randomized individuals. All patients were requested to take three daily capsules containing either 750 mg of BG11001 or a placebo vehicle for 24 wk; at the end of the testing period, skin roughness, elasticity, and skin water content were measured. Results: BG11001 significantly reduced the average roughness of eye wrinkles and the Global Photo Damage Score compared with the placebo, although there were no significant differences in arithmetic roughness average between the groups. In addition, gross elasticity and net elasticity values increased, and transepidermal water loss level decreased, indicating improved skin elasticity and moisture content. Conclusion: In conclusion, enzyme-treated red ginseng extract significantly improved eye wrinkle roughness, skin elasticity, and moisture content. Moreover, enzyme-treated red ginseng extract would be useful substance as a bio-health skin care product.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Primary Cilia, A Novel Bio-target to Regulate Skin Pigmentation (바이오 안테나인 일차 섬모 조절을 통한 피부 미백 기술)

  • Choi, Hyunjung;Park, Nokhyun;Kim, Jihyun;Cho, Dong-Hyung;Lee, Tae Ryong;Kim, Hyoung-June
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.73-79
    • /
    • 2018
  • The primary cilium protrudes from the cell body like a bio-antenna that has many receptors, channels and signaling molecules to sense and response to external stimuli. The external environment such as ultraviolet irradiation, temperature, humidity, gravity and shear stress always influences skin. Skin responds to external stimuli and differentiates by making melanin, collagen and horny layer. Ciliogenesis participates in developmental processes of skin, such as keratinocyte differentiation and hair formation. And it was reported that skin pigmentation was inhibited when ciliogenesis was induced by sonic hedgehog-smoothened-GLI2 signaling. When skin is exposed to ultraviolet irradiation, alpha-melanocyte stimulating hormones (${\alpha}$-MSH) increase melanin synthesis through activation of the cAMP pathway in melanocytes. We observed that ${\alpha}$-MSH and cAMP production inducers inhibited ciliogenesis of melanocytes. Therefore, we thought that regulation of ciliogenesis is potential candidate target for the development of agents to treat undesirable hyperpigmentation of skin. As a result, we found out that an ethanol extract of Glycyrrhiza glabra (EGG) root and 3,4,5-trimethoxy cinnamate thymol ester (TCTE, Melasolv) significantly inhibit melanin synthesis of normal human melanocyte by inducing primary cilium formation. This study proposed new theory to regulate skin pigmentation and cosmetic components for skin whitening.

Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • Background: Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$. Methods: We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$, and clot retraction. Results: KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via phosphorylation of VASP ($Ser^{157}$), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP ($Ser^{157}$) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of ${\alpha}IIb/{\beta}3$ activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of $[Ca^{2+}]_i$ mobilization and increase of cAMP production. Conclusion: These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$, and clot retraction, and may prevent platelet ${\alpha}IIb/{\beta}3$-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Effect of 840 nm Light-Emitting Diode(LED) Irradiation on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (흰쥐의 MIA 유발 무릎 뼈관절염에 대한 840 nm LED의 효과)

  • Jekal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung;Lee, Jae-Hyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.151-159
    • /
    • 2014
  • PURPOSE: The purpose of this study was to evaluate whether light-emitting diodes (LED) irradiation could be effective in a noninvasive, therapeutic device for the treatment of osteoarthritis(OA). METHODS: Twenty-four male Sprague-Dawley rats were divided into four groups: Vehicle control (saline); monosodium iodoacetate-injection (MIA); LED irradiation after MIA injection (MIA-LED); indomethacin-treatment after MIA injection (MIA-IMT). OA was induced by intra-articular injection of 3 mg MIA through the patellar ligament of the right knee. Vehicle control rats were injected with an equivalent volume of saline. The LED was irradiated for 15 min/day for a week after 7 days of MIA treatment. To compare with the effect of LED irradiation, the indomethacin was administrated 20 mg/kg twice a week orally after 7 days of MIA treatment. Knee joints were removed and fixed overnight in 10% neutral buffered formalin and decalcified by EDTA for 2 week before being embedded in paraffin. The assessment of OA induction were monitored by knee movement and radiographic finding. Histologic analysis were performed following staining with hematoxylin and eosin, safranin O-fast green, or toluidine blue, picrosirius red, and histologic changes were scored according to a modified Mankin system. Apoptotic cell in tissue sections was detected using TUNEL method. RESULTS: Radiographic examination could not show the differences between the MIA-treated and the MIA-LED-treated rats. In the histologic analysis, however, LED irradiation prevented cartilage damage and subchondral bone destruction, and significantly reduced mononuclear inflammatory cell infiltration and pannus formation. LED irradiation also reduced apoptosis of cartilage cells, but it prevented apoptosis of infiltrated inflammatory cells in synovium. In addition, LED irradiation showed an increase of collagen production in the meniscus. CONCLUSION: These results suggest that the 840 nm LED irradiation would be a suitable non-thermal phototherapy for the treatment of OA, as a cartilage protection and anti-inflammatory modality.