DOI QR코드

DOI QR Code

Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

  • Kwon, Hyuk-Woo (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University) ;
  • Shin, Jung-Hae (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University) ;
  • Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology and Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University)
  • Received : 2015.03.03
  • Accepted : 2015.05.08
  • Published : 2016.01.15

Abstract

Background: Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$. Methods: We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$, and clot retraction. Results: KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via phosphorylation of VASP ($Ser^{157}$), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP ($Ser^{157}$) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of ${\alpha}IIb/{\beta}3$ activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of $[Ca^{2+}]_i$ mobilization and increase of cAMP production. Conclusion: These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$, and clot retraction, and may prevent platelet ${\alpha}IIb/{\beta}3$-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.

Keywords

References

  1. Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177-209. https://doi.org/10.1152/physrev.1990.70.4.1177
  2. Phillips DR, Nannizzi-Alaimo L, Prasad KS. Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost 2001;86:246-58. https://doi.org/10.1055/s-0037-1616222
  3. Payrastre B, Missy K, Trumel C, Bodin S, Plantavid M, Chap H. The integrin alpha IIb/beta 3 in human platelet signal transduction. Biochem Pharmacol 2000;60:1069-74. https://doi.org/10.1016/S0006-2952(00)00417-2
  4. van Willigen G, Akkerman JW. Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIB-IIIA complex of human platelets. Biochem J 1991;273:115-20. https://doi.org/10.1042/bj2730115
  5. Laurent V, Loisel TP, Harbeck B, Wehman A, Gröbe L, Jockusch BM, Wehland J, Gertler FB, Carlier MF. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol 1999;144:1245-58. https://doi.org/10.1083/jcb.144.6.1245
  6. Sudo T, Ito H, Kimura Y. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 2003;14:381-90. https://doi.org/10.1080/09537100310001598819
  7. Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc Res 2009;82:261-71.
  8. Ok WJ, Cho HJ, Kim HH, Lee DH, Kang HY, Kwon HW, Rhee MH, Kim M, Park HJ. Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J Atheroscler Thromb 2012;19:337-48. https://doi.org/10.5551/jat.10363
  9. Lee DH, Kim HH, Cho HJ, Bae JS, Yu YB, Park HJ. Antiplatelet effects of caffeic acid due to $Ca^{2+}$ mobilization-inhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J Atheroscler Thromb 2014;21:23-37.
  10. Lincoff AM, Califf RM, Topol EJ. Platelet glycoprotein IIb/IIIa receptor blockade in coronary artery disease. J Am Coll Cardiol 2000;35:1103-15. https://doi.org/10.1016/S0735-1097(00)00554-4
  11. Sabatine MS, Jang IK. The use of glycoprotein IIb/IIIa inhibitors in patients with coronary artery disease. Am J Med 2000;109:224-37. https://doi.org/10.1016/S0002-9343(00)00474-5
  12. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34:259-63. https://doi.org/10.5142/jgr.2010.34.4.259
  13. Kim SK,Park JH. Trends inginseng researchin2010. J Ginseng Res 2011;35:389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  14. Chung IM, Lim JW, Pyun WB, Kim H. Korean Red Ginseng improves vascular stiffness in patients with coronary artery disease. J Ginseng Res 2010;34:212-8. https://doi.org/10.5142/jgr.2010.34.3.212
  15. Wee JJ, Kim YS, Kyung JS, Song YB, Do JH, Kim DC, Lee SD. Identification of anticoagulant components in Korean Red Ginseng. J Ginseng Res 2010;34:355-62. https://doi.org/10.5142/jgr.2010.34.4.355
  16. Jung YH, Park KY, Jeon JH, Kwak YS, Song YB, Wee JJ, Rhee MH, Kim TW. Red Ginseng Saponin fraction A isolated from Korean Red Ginseng by ultrafiltration on the porcine coronary artery. J Ginseng Res 2011;35:325-30. https://doi.org/10.5142/jgr.2011.35.3.325
  17. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean Red Ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 2008;6:778-83.
  18. Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits thromboxane $A_2$ production associated microsomal enzyme activity in platelets. J Ginseng Res 2012;36:40-6. https://doi.org/10.5142/jgr.2012.36.1.40
  19. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean Red Ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  20. Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, Park MH, Park TY, Park HJ, Cho JY, Rhee MH. GinsenosideRp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167:109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  21. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60:1531-6. https://doi.org/10.1211/jpp.60.11.0015
  22. Grynkiewicz G, Poenie M, Tsien RY. A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440-50.
  23. Horstrup K, Jablonka B, Hönig-Liedl P, Just M, Kochsiek K, Walter U. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 1994;225:21-7. https://doi.org/10.1111/j.1432-1033.1994.00021.x
  24. Barragan P, Bouvier JL, Roquebert PO, Macaluso G, Commeau P, Comet B, Lafont A, Camoin L, Walter U, Eigenthaler M. Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter Cardiovasc Interv 2003;59:295-302. https://doi.org/10.1002/ccd.10497
  25. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 2004;104:1703-10. https://doi.org/10.1182/blood-2003-10-3428
  26. Zhang J, Zhang J, Shattil SJ, Cunningham MC, Rittenhouse SE. Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or beta-phorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J Biol Chem 1996;271:6265-72. https://doi.org/10.1074/jbc.271.11.6265
  27. Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in ${\alpha}IIb{\beta}3$ signalling and platelet function. Nature 1999;401:808-11. https://doi.org/10.1038/44599
  28. Leclerc JR. Platelet glycoprotein IIb/IIIa antagonists: lessons learned from clinical trials and future directions. Crit Care Med 2002;30:S332-40. https://doi.org/10.1097/00003246-200205001-00025
  29. Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscl Throm Vas 2015;35:24-9. https://doi.org/10.1161/ATVBAHA.114.303411
  30. Shin JH, Kwon HW, Cho HJ, Rhee MH, Park HJ. Inhibitory effects of total saponin from Korean Red Ginseng on $[Ca^{2+}]_i$ mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets. J Ginseng Res 2015. http://dx.doi.org/10.1016/j.jgr.2015.03.006 [Epub ahead of print].
  31. Smolenski A, Bachmann C, Reinhard K, Hönig-Liedl P, Jarchau T, Hoschuetzky H, Walter U. Analysis and regulation of vasodilator-stimulated phosphoprotein serine239 phosphorylation in vitro and in intact cells using a phosphor specific monoclonal antibody. J Biol Chem 1998;273:20029-35. https://doi.org/10.1074/jbc.273.32.20029
  32. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004;104:1606-15. https://doi.org/10.1182/blood-2004-04-1257
  33. Hayashi H, Sudo T. Effects of the cAMP-elevating agents cilostamide, cilostazol and forskolin on the phosphorylation of Akt and GSK-3beta in platelets. Thromb Haemost 2009;102:327-35. https://doi.org/10.1160/TH08-12-0781
  34. Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007;100:1673-85. https://doi.org/10.1161/01.RES.0000267878.97021.ab
  35. Plow EF, Ginsberg MH. Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. J Biol Chem 1981;256:9477-82.
  36. Bultmann A, Li Z, Wagner S, Peluso M, Schonberger T, Weis C, Munch G. Impact of glycoprotein VI and platelet adhesion on atherosclerosis-a possible role of fibronectin. J Mol Cell Cardiol 2010;49:532-42. https://doi.org/10.1016/j.yjmcc.2010.04.009
  37. Matter CM, Schuler PK, Alessi P, Meier P, Ricci R, Zhang D, Lüscher TF. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004;95:1225-33. https://doi.org/10.1161/01.RES.0000150373.15149.ff
  38. Castro-Malaspina H, Rabellino EM, Yen A, Nachman RL, Moore MA. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 1981;57:781-7.
  39. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-8. https://doi.org/10.1126/science.284.5422.1994
  40. Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I. Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemos 2005;3:1569-76. https://doi.org/10.1111/j.1538-7836.2005.01366.x
  41. Schwartz SM, Reidy MA. Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Hum Pathol 1987;18:240-7. https://doi.org/10.1016/S0046-8177(87)80006-0
  42. Packham MA, Mustard JF. The role of platelets in the development and complications of atherosclerosis. Semin Hematol 1986;23:8-26.
  43. Schwartz SM, Ross R. Cellular proliferation in atherosclerosis and hypertension. Prog Cardiovasc Dis 1984;26:355-72. https://doi.org/10.1016/0033-0620(84)90010-0
  44. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 1982;92:584-8. https://doi.org/10.1083/jcb.92.2.584
  45. Phillips DR, Conley PB, Sinha U, Andre P. Therapeutic approaches in arterial thrombosis. J Thromb Haemost 2005;3:1577-89. https://doi.org/10.1111/j.1538-7836.2005.01418.x
  46. Byeon SE, Choi WS, Hong EK, Lee J, Rhee MH, Park HJ, Cho JY. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch Pharm Res 2009;32:813-22. https://doi.org/10.1007/s12272-009-1601-7
  47. Park JS, Cho JY. Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. Afr J Biotechnol 2009;8:3682-90.
  48. Lee YJ, Han JY, Lee CG, Heo K, Park SI, Park YS, Kim JS, Yang KM, Lee KJ, Rhee MH, et al. Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264. 7 macrophage cells. J Ginseng Res 2014;38:208-14. https://doi.org/10.1016/j.jgr.2014.02.001
  49. Yang Y, Lee J, Rhee MH, Yu T, Baek KS, Sung NY, Cho JY. Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J Ginseng Res 2015;39:61-8. https://doi.org/10.1016/j.jgr.2014.06.002
  50. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Yun YP. Antithrombotic and antiplatelet activities of Korean Red Ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  51. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  52. Lee JH, Park HJ. Effects of intaking of red ginseng products on human platelet aggregation and blood lipids. J Ginseng Res 1998;22:173-80.
  53. Park HJ, Lee JH, Lee SJ, Ham HS, Cho HJ, Lim CR, Park KH. Effects of intaking of red ginseng products on correlationship between obesity and blood lipids. Korean J Biomed Lab Sci 2000;6:253-60.
  54. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S. Studies on the saponins of ginseng. I. structures of ginsenoside-Ro,-Rb1,-Rb2,-Rc and-Rd. Chem Pharm Bull 1974;22:421-8. https://doi.org/10.1248/cpb.22.421
  55. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacologica Sinica 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  56. Matsuda H, Namba K, Fukuda S, Tani T, Kubo M. Pharmacological study on Panax ginseng CA Meyer. III. Effects of red ginseng on experimental disseminated intravascular coagulation. (2). Effects of ginsenosides on blood coagulative and fibrinolytic systems. Chem Pharm Bull 1986;34:1153-7. https://doi.org/10.1248/cpb.34.1153
  57. Matsuda H, Namba K, Fukuda S, Tani T, Kubo M. Pharmacological study on Panax ginseng CA Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem Pharm Bull 1986;34:2100-4. https://doi.org/10.1248/cpb.34.2100
  58. Kim S, Oh MH, Kim BS, Kim WI, Cho HS, Park BY, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res 2015. http://dx.doi.org/10.1016/j.jgr.2015.03.008 [Epub ahead of print].
  59. Teng CM, Kuo SC, Ko FN, Lee JC, Lee LG, Chen SC, Huang TF. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochimica et Biophysica Acta 1989;990:315-20. https://doi.org/10.1016/S0304-4165(89)80051-0

Cited by

  1. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/2423547
  2. PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과 vol.49, pp.2, 2016, https://doi.org/10.15324/kjcls.2017.49.2.99
  3. Inhibitory Effects of Total Saponin Korean Red Ginseng on Thromboxane A2 Production and P-Selectin Expression via Suppressing Mitogen-Activated Protein Kinases vol.23, pp.4, 2016, https://doi.org/10.15616/bsl.2017.23.4.310
  4. VASP Regulates NK Cell Lytic Granule Convergence vol.201, pp.10, 2016, https://doi.org/10.4049/jimmunol.1800254
  5. Effects of water-soluble tomato concentrate on platelet aggregation vol.5, pp.4, 2016, https://doi.org/10.4103/wjtcm.wjtcm_35_19
  6. Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP3RI and VASP vol.62, pp.1, 2016, https://doi.org/10.3839/jabc.2019.014
  7. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling vol.30, pp.5, 2016, https://doi.org/10.1080/09537104.2018.1479033
  8. Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling vol.11, pp.21, 2016, https://doi.org/10.18632/aging.102387
  9. Effect of Yiqi Huoxue Granules on Platelet Activation Induced by Thrombin vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6622848
  10. Thiol Isomerases Orchestrate Thrombosis and Hemostasis vol.35, pp.13, 2021, https://doi.org/10.1089/ars.2021.0086