• 제목/요약/키워드: Collaborative engineering system

검색결과 555건 처리시간 0.024초

The relationship between prediction accuracy and pre-information in collaborative filtering system

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.803-811
    • /
    • 2010
  • This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.

Product Specification Management in Collaborative NPD: An Investigation of Problems and Good Practices in Electronics Industry

  • Lam, Ping-Kit;Chin, Kwai-Sang;Cheung, Wai-Ying
    • International Journal of Quality Innovation
    • /
    • 제7권1호
    • /
    • pp.35-47
    • /
    • 2006
  • Client-supplier collaboration has been an imperative approach to new product development (NPD), in which a good product specification management system and practice is crucial to the assurance of product quality. This study investigates product specification management in client-supplier collaborative NPD. Based on the interviews and survey study, 12 problems and 13 good practices of product specification management are identified. It also compares the importance and degree of the implementation of the product specification practices in Hong Kong electronics industry. The results suggest that more intensive practices should be implemented for better product specification management.

Social Network based Sensibility Design Recommendation using {User - Associative Design} Matrix (소셜 네트워크 기반의 {사용자 - 연관 디자인} 행렬을 이용한 감성 디자인 추천)

  • Jung, Eun-Jin;Kim, Joo-Chang;Jung, Hoill;Chung, Kyungyong
    • Journal of Digital Convergence
    • /
    • 제14권8호
    • /
    • pp.313-318
    • /
    • 2016
  • The recommendation service is changing from client-server based internet service to social networking. Especially in recent years, it is serving recommendations with personalization to users through crowdsourcing and social networking. The social networking based systems can be classified depending on methods of providing recommendation services and purposes by using memory and model based collaborative filtering. In this study, we proposed the social network based sensibility design recommendation using associative user. The proposed method makes {user - associative design} matrix through the social network and recommends sensibility design using the memory based collaborative filtering. For the performance evaluation of the proposed method, recall and precision verification are conducted. F-measure based on recommendation of social networking is used for the verification of accuracy.

A Recommendation System using Dynamic Profiles and Relative Quantification

  • Lee, Se-Il;Lee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.165-170
    • /
    • 2007
  • Recommendation systems provide users with proper services using context information being input from many sensors occasionally under ubiquitous computing environment. But in case there isn't sufficient context information for service recommendation in spite of much context information, there can be problems of resulting in inexact result. In addition, in the quantification step to use context information, there are problems of classifying context information inexactly because of using an absolute classification course. In this paper, we solved the problem of lack of necessary context information for service recommendation by using dynamic profile information. We also improved the problem of absolute classification by using a relative classification of context information in quantification step. As the result of experiments, expectation preference degree was improved by 7.5% as compared with collaborative filtering methods using an absolute quantification method where context information of P2P mobile agent is used.

Human Action Recognition Using Pyramid Histograms of Oriented Gradients and Collaborative Multi-task Learning

  • Gao, Zan;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.483-503
    • /
    • 2014
  • In this paper, human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning is proposed. First, we accumulate global activities and construct motion history image (MHI) for both RGB and depth channels respectively to encode the dynamics of one action in different modalities, and then different action descriptors are extracted from depth and RGB MHI to represent global textual and structural characteristics of these actions. Specially, average value in hierarchical block, GIST and pyramid histograms of oriented gradients descriptors are employed to represent human motion. To demonstrate the superiority of the proposed method, we evaluate them by KNN, SVM with linear and RBF kernels, SRC and CRC models on DHA dataset, the well-known dataset for human action recognition. Large scale experimental results show our descriptors are robust, stable and efficient, and outperform the state-of-the-art methods. In addition, we investigate the performance of our descriptors further by combining these descriptors on DHA dataset, and observe that the performances of combined descriptors are much better than just using only sole descriptor. With multimodal features, we also propose a collaborative multi-task learning method for model learning and inference based on transfer learning theory. The main contributions lie in four aspects: 1) the proposed encoding the scheme can filter the stationary part of human body and reduce noise interference; 2) different kind of features and models are assessed, and the neighbor gradients information and pyramid layers are very helpful for representing these actions; 3) The proposed model can fuse the features from different modalities regardless of the sensor types, the ranges of the value, and the dimensions of different features; 4) The latent common knowledge among different modalities can be discovered by transfer learning to boost the performance.

K-Nearest Neighbor Course Recommender System using Collaborative Filtering (협동적 필터링을 이용한 K-최근접 이웃 수강 과목 추천 시스템)

  • Sohn, Ki-Rack;Kim, So-Hyun
    • Journal of The Korean Association of Information Education
    • /
    • 제11권3호
    • /
    • pp.281-288
    • /
    • 2007
  • Collaborative filtering is a method to predict preference items of a user based on the evaluations of items provided by others with similar preferences. Collaborative filtering helps general people make smart decisions in today's information society where information can be easily accumulated and analyzed. We designed, implemented, and evaluated a course recommendation system experimentally. This system can help university students choose courses they prefer to. Firstly, the system needs to collect the course preferences from students and store in a database. Users showing similar preference patterns are considered into similar groups. We use Pearson correlation as a similarity measure. We select K-nearest students to predict the unknown preferences of the student and provide a ranked list of courses based on the course preferences of K-nearest students. We evaluated the accuracy of the recommendation by computing the mean absolute errors of predictions using a survey on the course preferences of students.

  • PDF

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권12호
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device (모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구)

  • Lee, Hak Min;Um, Jong Seok
    • Journal of Korea Multimedia Society
    • /
    • 제20권2호
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.

Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • 제11권3호
    • /
    • pp.137-153
    • /
    • 2005
  • Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.

Development of Collaborative Process Warehouse for Analyzing Performance of Manufacturing Collaboration (제조협업 성과분석을 위한 협업 프로세스 웨어하우스 개발)

  • Kim, Kyu-Ri;Kim, Ae-Kyung;Kim, Sang-Kuk;Jung, Jae-Yoon
    • IE interfaces
    • /
    • 제25권1호
    • /
    • pp.71-78
    • /
    • 2012
  • Most manufacturing companies participate in various types of active collaboration to enhance competitive advantages in their arenas. In this paper, we introduce a data warehouse system that is designed for manufacturing collaboration. Just as enterprise information systems, collaboration support systems also need functions of performance measurement and monitoring. For this reason, we devise a new approach to measuring and evaluating performance of manufacturing collaboration. Specifically, we first present a concept of process warehouses for manufacturing collaboration. Next, we design a data schema of collaborative process warehouses to store and monitor collaboration performances. Finally, we implement a prototype system to support performance management of manufacturing collaboration. The proposed system can be used to effectively maintain and continuously improve collaboration in manufacturing industry.