Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo (Graduate School of Management, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jong-Woo (School of Business, Hanyang University) ;
  • Park, Sung-Joo (Graduate School of Management, Korea Advanced Institute of Science and Technology)
  • Published : 2005.12.01

Abstract

Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.

Keywords

References

  1. Ansari, A., S. Essegaier, and R. Kohli, 'Internet recommendation systems,' Journal of Marketing Research 37, 3 (2004), 363-375 https://doi.org/10.1509/jmkr.37.3.363.18779
  2. Breese, J. S., D. Heckerman, and C. Kadie, 'Empirical analysis of predictive algorithms for collaborative filtering,' in the Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998, 43-52 https://doi.org/10.1.1.37.3780
  3. Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl, 'Evaluating Collaborative Filtering Recommender Systems,' ACM Transactions on Information Systems 22, 1 (2004), 5-53 https://doi.org/10.1145/963770.963772
  4. Huang, Z., H. Chen, and D. Zeng, 'Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering,' ACM Transactions on Information Systems 22, 1 (2004), 116-142 https://doi.org/10.1145/963770.963775
  5. Kim, J. W., H. J. Lee, and S. J. Park, 'Parameter Selection of Collaborative Filtering for e-Commerce Personalized Recommendation,' in The 7th International Conference on Electronic Commerce Research (ICECR-7), Dallas, U.S.A, 2004
  6. Konstan, J. A., B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, 'GroupLens: Applying collaborative filtering to usenet news,' Communication of the ACM 40, 3 (1997), 77-87 https://doi.org/10.1145/245108.245126
  7. Linden, G., B. Smith, and J. York, 'Amazon. com recommendations: Item-toitem collaborative filtering,' IEEE Internet Computing 7,3 (2003), 76-80 https://doi.org/10.1109/MIC.2003.1167344
  8. Mild, A. and M. Natter, 'Collaborative filtering or regression models for Internet recommendation systems?' Journal of Targeting, Measurement and Analysis of Marketing 10, 4 (2002), 304-313 https://doi.org/10.1057/palgrave.jt.5740055
  9. Mobasher, B., R. Cooley, and J. Srivasta, 'Automatic personalization based on web usage mining,' Communication of the ACM 43,8 (2000), 142-151 https://doi.org/10.1145/345124.345169
  10. Mulvenna, M. D., S. S. Anand, and A. G. Buchner, 'Personalization on the net using web mining,' Communication of the ACM 43, 8 (2000), 122-125 https://doi.org/10.1145/345124.345165
  11. Nquyen, H. and P. Haddawy. 'The Decision-Theoretic Video Advisor,' in AAAI Workshop on Recommender Systems, 1998, 76-80
  12. Pennock, D. M., E. Horvitz, S. Lawrence, and C. L. Giles, 'Collaborative Filtering by Personality Diagnosis: A Hybrid Memory- and Model-Based Approach,' in the Sixteenth Conference on Unceratainty in Aritificial Intelligence(UAI-2000), San Francisco, 2000, 473-480
  13. Rashid, A. M., I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J. Riedl. 'Getting to Know You: Learning New User Preferences in Recommender Systems,' in the ACM IUI'02, San Francisco, 2002,127-134 https://doi.org/10.1145/502716.502737
  14. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 'Analysis of Recommendation Algorithms for e-Commerce,' in EC'00, Minneapolis, 2000, 158-167 https://doi.org/10.1145/352871.352887
  15. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 'Item-Based Collaborative Filtering Recommendation Algorithms,' in WWW10, Hong Kong, 2001, 285-295 https://doi.org/10.1145/371920.372071
  16. Sarwar, B. M., G. Karypis, J. A. Konstan, and J. T. Riedl, 'Application of Dimensionality Reduction in Recommender System - A Case Study,' in ACM WebKDD 2000 Web Mining for E-Commerce Workshop, 2000
  17. Schein, A. I., A. Popescul, L. H. Ungar, and D. M. Pennock. 'Generative Model for Cold-Start Recommendations,' in SIGIR Workshop on Recommender Systems, New Orleans, LA, 2001
  18. Schein, A. I., A. Popescul, L. H. Ungar, and D. M. Pennock, 'Methods and Metrics for Cold Start Recommendations,' in the ACM SIGIR '02, Tampere, Finland, 2002, 253-260 https://doi.org/10.1145/564376.564421
  19. Ungar, L. H. and D. P. Foster, 'Clustering Methods for Collaborative Filtering,' in Workshop on Recommendation Systems at the Fifteenth National Conference on Artificial Intelligence, 1998