• Title/Summary/Keyword: Collaborative Problem Solving

Search Result 186, Processing Time 0.071 seconds

Designing an Instructional Model for Smart Technology-Enhanced Team-Based Learning (스마트 테크놀로지를 활용한 팀 기반 학습 모형 설계 연구)

  • Lee, Soo-Young
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2013
  • The purpose of this study is to explore and develop a new instructional approach to a technology-enhanced, collaborative learning environment called Smart technology-enhanced Team-Based Learning (S-TBL). We designed a novel instructional model that combines mobile technology, collaborative teamwork, a problem-solving process, and a variety of evaluation techniques from the viewpoint of a conventional team-based model. Based on the traditional TBL model, we have integrated smart learning technologies: 1) to provide a holistic learning environment that integrates learning resources, assessment tools, and problem solving spaces; and 2) to enhance collaboration and communication between team members and between an instructor and his or her students. The S-TBL instructional approach combines: 1) individual learning and collaborative team learning; 2) conceptual learning and problem-solving & critical thinking; 3) both individual and group assessment; 4) self-directed learning and teacher-led instruction; and 5) personal reflection and publication.

An Analysis of Third Graders' Representations and Elaborating Processes of Representations in Mathematical Problem Solving (초등학교 3학년 학생의 수학적 문제 해결에서의 표상과 표상의 정교화 과정 분석)

  • Lee, Yang-Mi;Jeon, Pyung-Kook
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.627-651
    • /
    • 2005
  • This study was conducted to attain an in-depth understanding of students' mathematical representations and to present the educational implications for teaching them. Twelve mathematical tasks were developed according to the six types of problems. A task performance was executed to 151 third graders from four classes in DaeJeon and GyeongGi. We analyzed the types and forms of representations generated by them. Then, qualitative case studies were conducted on two small-groups of five from two classes in GyeongGi. We analyzed how individuals' representations became elaborated into group representation and what patterns emerged during the collaborative small-group learning. From the results, most students used more than one representation in solving a problem, but they were not fluent enough to link them to successful problem solving or to transfer correctly among them. Students refined their representations into more meaningful group representation through peer interaction, self-reflection, etc.. Teachers need to give students opportunities to think through, and choose from, various representations in problem solving. We also need the in-depth understanding and great insights into students' representations for teaching.

  • PDF

What is Shared in Collaborative Problem Solving Process of Scientific Gifted Students? (과학영재들은 협업적 문제해결과정에서 무엇을 공유하는가?)

  • Lee, Ji Won;Kim, Jung Bog
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.6
    • /
    • pp.1099-1115
    • /
    • 2013
  • Collective intelligence has been focused because it plays an important role for creating knowledge. In order to solve a problem with collective intelligence, collaborative works sharing information are required. In this study, we have investigated what informations are shared while 4 science gifted students are asked for scientific explanation to the problem which is cognitive conflict. They have shared presupposition and problem in stage of problem finding, aims and means of problem solving in stage of setting up hypotheses, and constraints for evaluation and results of evaluation in stage of hypotheses evaluation. Our research tells that group can create knowledge through sharing information and make a change of their concepts. Our foundation of these spontaneous conceptual change gives an implication for gifted education.

Analysis of Teacher Understanding After Adapting Collaborative Problem-Solving for Character Competence (CoProC) Program on Science Education (과학교육 기반 인성역량 함양을 위한 협력적 문제해결(CoProC) 프로그램 실천 교사들의 이해 분석)

  • Kang, Eugene;Park, Jihun;Park, Jongseok;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.133-144
    • /
    • 2021
  • Science teachers in elementary schools and secondary schools recognize the necessity of character education, feeling difficulties such as evaluation methods, mood of competition, extra work and lack of time according to previous research, which were based on answers from science teachers not experiencing character education. As a rare study of teacher experiencing, previous researches didn't fully address the problems and suggestions about adopting character education in science classrooms. This study is about teacher practice of character education on site with the CoProC (Collaborative Problem-Solving for Character Competence) program in science classes with which other previous studies shed new light. Five teachers, adapting the CoProC program in their science classes, participated in two interviews, sharing their student achievement in character education. Results showed that student achievement was high when their teacher had experienced the training program, development, and classes of CoProC rather than their normal teaching career. Teacher recognition on the aims of CoProC influenced difficulties, evaluation, and feedback.

Effect of Collaborative Problem-Solving for Competency Instruction Strategy Using Science Reading Text on Elementary Sch ool Students' Science Reading Ability (과학 읽기 자료를 이용한 협력적 문제해결 중심 과학 수업이 초등학교 학생들의 과학 읽기 능력에 미치는 영향)

  • Park, Jihun;Jun, Jaekyoung;Lee, Sujin;Nam, Jeonghee
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.642-657
    • /
    • 2022
  • This study aimed to investigate how elementary school students' science reading ability is influenced by collaborative problem-solving for competency instruction strategy using science reading text. This study recruited two groups of elementary students in fifth grade. The experimental group underwent an instruction strategy using science reading text, while the comparative group experienced a science class using a textbook. Afterward, data from the science reading ability tests, voice recordings of the discussion process involving each group, and class videos were collected and analyzed. The results showed that science classes that used collaborative problem-solving for their competency instruction strategy via science reading text were effective in enhancing elementary school students' science reading ability. Meanwhile, the science reading ability test results indicated that the experimental group had statistically higher total scores than the comparative group in the three subelements, especially "introspection and evaluation" and "integration and interpretation" owing to their significant improvement in high-level cognitive processes. In these classes, the students read the materials that the teacher provided, participated in the discussion based on what they have read, and had the chance to reflect on their reading processes. Overall, students' science reading ability was enhanced through this process.

An analysis of spatial reasoning ability and problem solving ability of elementary school students while solving ill-structured problems (초등학생들의 비구조화된 문제 해결 과정에서 나타나는 공간 추론 능력과 문제 해결 능력)

  • Choi, Jooyun;Kim, Min Kyeong
    • The Mathematical Education
    • /
    • v.60 no.2
    • /
    • pp.133-157
    • /
    • 2021
  • Ill-structured problems have drawn attention in that they can enhance problem-solving skills, which are essential in future societies. The purpose of this study is to analyze and evaluate students' spatial reasoning(Intrinsic-Static, Intrinsic-Dynamic, Extrinsic-Static, and Extrinsic-Dynamic reasoning) and problem solving abilities(understanding problems and exploring strategies, executing plans and reflecting, collaborative problem-solving, mathematical modeling) that appear in ill-structured problem-solving. To solve the research questions, two ill-structured problems based on the geometry domain were created and 11 lessons were given. The results are as follows. First, spatial reasoning ability of sixth-graders was mainly distributed at the mid-upper level. Students solved the extrinsic reasoning activities more easily than the intrinsic reasoning activities. Also, more analytical and higher level of spatial reasoning are shown when students applied functions of other mathematical domains, such as computation and measurement. This shows that geometric learning with high connectivity is valuable. Second, the 'problem-solving ability' was mainly distributed at the median level. A number of errors were found in the strategy exploration and the reflection processes. Also, students exchanged there opinion well, but the decision making was not. There were differences in participation and quality of interaction depending on the face-to-face and web-based environment. Furthermore, mathematical modeling element was generally performed successfully.

Analysis of the Refinement of Shared Mental Model in Science-Gifted Students' Collaborative Problem Solving Process (과학영재의 협업적 문제해결과정에서 나타난 공유된 정신모형의 정교화 양상 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.1049-1062
    • /
    • 2015
  • To understand the synergy of collaboration and to apply this understanding to education, an analysis of how a team solves a problem and the sharing of their mental models is needed. This paper analyzed two things qualitatively to find out the source of synergy in a collaborative problem-solving process. First, the sharing contents in team mental model and second, the process of sharing the team mental model. Ten gifted middle school students collaborated to solve an ill-defined problem called sunshine through foliage problem. The gifted students shared the following results after the collaboration: First, scientific concept prior to common idea or the idea that all group members have before the discussions; second, unique individual ideas of group members; and third, created ideas that were not originally in the personal mental model. With created ideas, the team model becomes more than the sum of individuals. According to the results of process analysis, in the process of sharing mental model, the students proposed and shared the most important variable first. This result implied that the analysis of the order of sharing ideas is important as much as finding shared ideas. Also, the result shows that through their collaboration, the gifted students' shared mental model became more refined and expanded as compared to their individual prior mental models. It is recommended that these results can be used to measure shared mental model and develop collaborative learning models for students.

An Interdisciplinary Approach to Industry-Based Complex Problem-Solving: Sustainable Policy Solutions to the Malaysian Water Crisis

  • Richards, Cameron;Padfield, Rory
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.1
    • /
    • pp.55-77
    • /
    • 2016
  • This paper focuses on how an integrated or systemic approach is needed to both investigate and connect different kinds of interdisciplinary inquiry and knowledge within and beyond universities to encourage more productive collaboration with the other three ‘macro stakeholders’ - government, business, and the wider community. In this way universities can and should provide a greater leadership role in sustainability, innovation and policy studies. Such a framework is needed to also help to change the view of many that academics should just play a supporting role of providing specialised technical expertise only to the other macro stakeholders. The interdisciplinary and collaborative framework developed here is applied to the on-going water crisis in Malaysia - an exemplary complex problem-solving basis for seeking sustainable policy solutions to diverse challenges. As further discussed, this was applied also in practice to a multi-stakeholder seminar on addressing the difficult policy challenges of the Malaysian water industry and sector.

A Rationale of Mathematical Problem Solving on a Small Group-Focusing on Collaborative Interaction

  • Lee, Young-suk
    • Research in Mathematical Education
    • /
    • v.5 no.1
    • /
    • pp.77-86
    • /
    • 2001
  • The purpose of this study is to examine a theoretical framework for the interactions of learning in a small group setting of mathematical problem solving. Many researchers already have described the theoretical background for the small group settings in problem solving. However, most of the literatures merely have reported findings of achievement and rising of test scores. They ignored the observation of process taken during the small group work and have not determined how various psychological, social and academic effects are created. As results of the study, two types, mutual collaboration and asymmetric collaboration, of interactions are observed as the interactions of learning, which are conceived as the cores of authentic mathematical activities.

  • PDF

The Growth of School Mathematics: Korean Secondary Gifted Students' Collaborative Problem Solving Using The Wiki (학교수학적 지식의 성장: 고등학교 영재 학생들의 위키(Wiki) 기반 협력 문제해결 활동을 중심으로)

  • Lee, Seoung Woo
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.717-754
    • /
    • 2015
  • As a design research, this study aims to identify students' collaborative problems solving patterns using the Wiki and design factors triggering MKB(mathematical knowledge building) in virtual environment. For 70 days, 14 Korean secondary gifted students, who enrolled in calculus II courses in one of gifted institutions in Korea, solved 10 math problems together using the Wiki. In this study, I considered five design factors; motivation, practice of LaTeX, norms of participation, epistemic agency, and two types of educational settings. The primary pattern emergent in students' collaborative problem solving process is identified as 'solutions and refutations' along the double helix consisting of the constructive line and the critical line, which is very similar to the pattern of 'Conjectures and Refutations'(Lakatos, 1976). Despite that most participants had difficulty in using LaTeX for mathematical expressions, this study shows that Wikis are valuable tools for providing Korean secondary students opportunities to learn social virtue such as humility and courage (Lampert, 1990), which is considered to be have been neglected in Korean educational environment but is emphasized as precious for doing mathematics in the field of mathematics education.