• Title/Summary/Keyword: Codon

Search Result 502, Processing Time 0.025 seconds

Cloning and Characterization of ${\Delta}^1$-Pyrroline-5-Carboxylate Synthetase Genes and Identification of Point Mutants in Medicago truncatula

  • Song, Ki-Hoon;Song, Dae-Hae;Lee, Jeong-Ran;Kim, Goon-Bo;Choi, Hong-Kyu;Penmetsa, R. Varma;Nam, Young-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.458-468
    • /
    • 2007
  • To tolerate environmentally adverse conditions such as cold, drought, and salinity, plants often synthesize and accumulate proline in cells as compatible osmolytes. ${\Delta}^1$-Pyrroline-5-carboxylate synthetase(P5CS) catalyzes the rate-limiting step of proline biosynthesis from glutamate. Two complete genes, MtP5CS1 and MtP5CS2, were isolated from the model legume Medicago truncatula by cDNA cloning and bacterial artificial chromosome library screening. Nucleotide sequence analysis showed that both genes consisted of 20 exons and 19 introns. Alignment of the predicted amino acid sequences revealed high similarities with P5CS proteins from other plant species. The two MtP5CS genes were expressed in response to high salt and low temperature treatments. Semi-quantitative reverse transcription-polymerase chain reaction showed that MtP5CS1 was expressed earlier than MtP5CS2, indicating differential regulation of the two genes. To evaluate the reverse genetic effects of nucleotide changes on MtP5CS function, a Targeting Induced Local Lesions in Genomes approach was taken. Three mutants each were isolated for MtP5CS1 and MtP5CS2, of which a P5CS2 nonsense mutant carrying a codon change from arginine to stop was expected to bring translation to premature termination. These provide a valuable genetic resource with which to determine the function of the P5CS genes in environmental stress responses of legume crops.

Localization of Translation Initiation Factors to the Postsynaptic Sites (신경세포 연접후 위치에 단백질합성 해석시작인자(eIF)들의 존재)

  • Choi, Myoung-Kwon;Park, Sung-Dong;Park, In-Sick;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1526-1531
    • /
    • 2011
  • Local protein synthesis in neuronal dendrites is important for site-specific regulation of synaptic plasticity. In this study, we investigated whether translation initiation factors (eIFs) are present at the postsynaptic sites. High resolution confocal microscopy showed that the eIF4E and eIF4G (which bind the 5'-terminal mRNA cap), eIF5 (which is important during the 3' direction scanning to find an initiation codon), eIF6 (which mediates upregulation of translation by external stimuli), and eIF5A (which mediate translation upregulation under adverse conditions) were localized to the post-synaptic sites. Immunoblot and detergent extraction experiments also indicated that these eIFs were present in the synapse in association with the postsynaptic density (PSD). Our data provide evidence for the strategic positioning of eIFs at the postsynaptic site for initiation of translation in diverse situations.

Development of SCAR Markers for Early Identification of Cytoplasmic Male Sterility Genotype in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Hwan;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.416-422
    • /
    • 2005
  • We previously used Southern blot analysis to detect restriction-length polymorphisms between male fertile and cytoplasmic male sterile (CMS) cytoplasms at the coxII and atp6 loci of the mtDNA of Capsicum annuum L. Two copies of atp6 were found in each male fertile and CMS pepper lines. Interestingly, one of the copies of atp6 in CMS pepper was a 3'-truncated pseudogene. The open reading frame of the coxII gene was the same in the fertile (N-) and CMS (S-) lines. However, the nucleotide sequence in the S-cytoplasm diverged from that in the N-cytoplasm 41 bp downstream of the stop codon. To develop CMS-specific sequence-characterized amplified region (SCAR) markers, inverse PCR was performed to characterize the nucleotide sequences of the 5' and 3' flanking regions of mitochondrial atp6 and coxII from the cytoplasms of male fertile (N-) and CMS (S-) pepper plants. Based on these data, two CMS-specific SCAR markers, 607 and 708 bp long, were developed to distinguish N-cytoplasm from S-cytoplasm by PCR. The CMS-specific PCR bands were verified for 20 cultivars containing either N- or S-cytoplasm. PCR amplification of CMS-specific mitochondrial nucleotide sequences will allow quick and reliable identification of the cytoplasmic types of individual plants at the seedling stage, and assessment of the purity of $F_1$ seed lots. The strategy used in this report for identifying CMS-specific markers could be adopted for many other crops where CMS is used for F1 seed production.

A spsB Gene Putatively Encoding Glucosyl-Isopreny Phosphate-Transferase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77의 Glucosyl-Isoprenyl Phosphate-Transferase를 암호화할 것으로 추정되는 spsB 유런자)

  • Lee Soo-Youn;Choi Jung-Do;Shin Malshick;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • Some genes, which are involved in the biosynthesis of polysaccharides, could be found by the genome project of Sphingomonas chungbukensis DJ77. In this study, we identified the complete nucleotide sequence of a gene, encoding the glucosyl-isoprenyl phosphate-transferase, which catalyzes the first step in the biochemical pathway for the synthesis of the sphingan type polysaccharide. This gene, named spsB, is initiated by the ATG codon and terminated by the TGA, and its open reading frame consists of 1392 bp, encoding 463 amino acids. The predicted amino acid sequence of this enzyme indicates $50\%$ similarity to SpsB of Sphingomonas spp S88, also produces sphingan, and $48\%$ to GelB of Sphingomonas paucimobilis ATCC 31461.

A Case of Dominantly Inherited β Thalassemia Due to Hb Dieppe (Hb Dieppe에 의한 우성유전 베타 지중해빈혈 1례)

  • Choi, You Kyoung;Lee, Hong Jin;Park, Won Il;Lee, Kyung Ja;Kang, Sung Ha;Kim, Ji Yeon;Park, Sung Sup
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.5
    • /
    • pp.659-663
    • /
    • 2002
  • ${\beta}$ thalassemias are usually transmitted as autosomal recessive traits. However, some dominant forms of ${\beta}$ thalassemia have been identified in individuals who have inherited a single copy of an abnormal ${\beta}$ globin gene. Thalassemia intermedia with mild anemia, jaundice, and splenomegaly has been observed in these patients. Electrophoresis has shown elevated Hemoglobin(Hb) $A_2$ and Hb F levels. In particular, there are inclusion bodies in the erythroid precursors and peripheral red blood cells after splenectomy. The molecular basis of these dominant ${\beta}$ thalassemias is heterogeneous. The authors studied the first Korean case of dominantly inherited ${\beta}$ thalassemia due to Hb Dieppe. Hb Dieppe is a missense mutation of ${\beta}$ codon $127(CAG{\rightarrow}CGG)Gln{\rightarrow}Arg$. The patient in this case was characterized by moderate anemia, hypochromia, microcytosis, elevated Hb $A_2$ levels, elevated Hb F levels and splenomegaly. The father of the patient also has the same disease. We report this case and review related literature.

Isolation of a Promoter Element that is Functional in Bacillus subtilis for Heterologous Gene Expression

  • Maeng, Chang-Jae;Kim, Hyung-Kwoun;Park, Sun-Yang;Koo, Bon-Tag;Oh, Tae-Kwang;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • To construct an efficient Bacillus subtilis expression vector, strong promoters were isolated from the chromosomal DNA libraries of Clostridium acetobutylicum ATCC 4259, Thermoactinomyces sp. E79, and Bacillus thermoglucosidasius KCTC 3400. The $P_{C27}$ promoter cloned from the clostridial chromosmal DNA showed a 5-fold higher promoter strength than the $P_{SP02}$ promoter in the expression of the cat gene, and its sequence was estimated as an upstream region of the predicted hypothetical gene (tet-R family bacterial transcription regulator gene) in C. acetobutylicum. As a promoter element, $P_{C27}$ exhibited putative nucleotide sequences that can bind with bacterial RNAP and the 3'end of the 16S rRNA just upstream of the start codon. In addition, the promoter activity of $P_{C27}$ was distinctively repressed in the presence of glucose. Using $P_{C27}$ as the promoter element, a glucose controllable B. subtilis expression vector was constructed and the lipase gene from Staphylococcus haemolyticus KCTC 8957P was expressed in B. subtilis. When compared with the lipase expression by the T7 promoter induced by IPTG in E. coli, the $P_{C27}$ promoter showed about a 1.5-fold higher expression level in B. subtilis than that without induction.

  • PDF

Transgenic Tobacco Plant Expressing Environmental E. coli merA Gene for Enhanced Volatilization of Ionic Mercury

  • Haque, Shafiul;Zeyaullah, Md.;Nabi, Gowher;Srivastava, P.S.;Ali, Arif
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.917-924
    • /
    • 2010
  • The practicability of transgenic tobacco engineered to express bacterial native mercuric reductase (MerA), responsible for the transport of $Hg^{2+}$ ions into the cell and their reduction to elemental mercury ($Hg^0$), without any codon modification, for phytoremediation of mercury pollution was evaluated. Transgenic tobacco plants reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve the less toxic elemental mercury. Transformed tobacco produced a large amount of merA protein in leaves and showed a relatively higher resistance phenotype to $HgCl_2$ than wild type. Results suggest that the integrated merA gene, encoding mercuric reductase, a key enzyme of the bacterial mer operon, was stably integrated into the tobacco genome and translated to active MerA, which catalyzes the bioconversion of toxic $Hg^{2+}$ to the least toxic elemental $Hg^0$, and suggest that MerA is capable of reducing the $Hg^{2+}$, probably via NADPH as an electron donor. The transgenic tobacco expressing merA volatilized significantly more mercury than wild-type plants. This is first time we are reporting the expression of a bacterial native merA gene via the nuclear genome of Nicotiana tabacum, and enhanced mercury volatilization from tobacco transgenics. The study clearly indicates that transgenic tobacco plants are reasonable candidates for the remediation of mercurycontaminated areas.

Genetic Characterization of β-lactamase (VPA0477) in Vibrio parahaemolyticus (장염비브리오가 보유하는 β-lactamase (VPA0477)의 유전학적 특성)

  • Lee, Nam-Hyung;Song, Hyun-Jung;Park, Chang-Soo;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.597-604
    • /
    • 2011
  • Using 108 strains of Vibrio parahaemolyticus isolated from seawater, we investigated ampicillin-resistance profiles and the genetic characterization of ${\beta}$-lactamase (VPA0477). All of the strains studied, except one strain, were resistant to ampicillin. However, the strain that was susceptible to ampicillin had the same ${\beta}$-lactamase gene as the ampicillin-resistant strains. We compared ${\beta}$-lactamase promoter region sequences among five strains, including both ampicillin-resistant and -susceptible strains. In the susceptible strain, a nucleotide at position -19 in the methionine initiation codon for ${\beta}$-lactamase was not present in the ampicillin-resistant strains. The genes in the region containing the gene VPA0477 were present in all of the tested strains, and LA-PCR analysis showed that the distance between VPA0474 and VPA0479 in all of the V. parahaemolyticus samples was precisely 5.7 kb. In V. parahaemolyticus ${\beta}$-lactamase, four important structural features that are conserved in Class A ${\beta}$-lactamases were present in the deduced amino acid sequences. Taken together, our study demonstrates that V. parahaemolyticus ${\beta}$-lactamase is included in the Class A ${\beta}$-lactamase group, and some nucleotides within the promoter region are of particular importance for ${\beta}$-lactamase activity.

The Structural Characterization of Recombinant Bovine Somatotropin Expressed in Escherichia coli (재조합 소성장호르몬의 구조적 특성)

  • 김정호;김훈주박은숙김준
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1994
  • In this paper we have described the structural characterization of recombinant bovine somatotropin produced in Escherichia coli. Recombinant bovine somatotropin consists of 191 amino acid residues with a calculated molecular weight of 21,802 Da. For fragmentation of recombinant bovine somatotropin, we have used trypsin, Staphylococcus aureus V8 pretease, CNBr, and mild acid hydrolysis method. Digestion and cleavage with these proteases and chemicals yielded peptides of various size for amino acid sequence determination. The N-terminal sequence analysis was carried out up to thirty residues. Because the design of the recombinant bovine somatotropin gene for expression was such that the coding sequence begins with an initiation codon, AUG, before Ala, the first amino acid of bovine somatotropin, we could expect the initial amino acid as N-formyl Met. But the first amino acid of this protein, expressed in E. coli cells as inclusion bodies, was Ala. And the amino acid composition of RP-HPLC purified recombinant bovine somatotropin was determined and no essencial difference was observed. The amino acid sequence of the recombinant bovine somatotropin was identical to that predicted from its recombinant gene. There was no processing or replacement of amino acid residues in recombinant bovine somatotropin expressed in E. coli. The hydropathy plot of recombinant bovine somatotropin revealed a hydrophobic region at the NH2-terminus and hydrophilic region at the COOH-terminus. The E. coli expression system is thought to be valuable for the expression of recombinant bovine somatotropin because protein was processed to remove the N-terminal Met residue by methionyl-aminopeptidase autonomously.

  • PDF

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.