Browse > Article
http://dx.doi.org/10.4014/jmb.1002.02001

Transgenic Tobacco Plant Expressing Environmental E. coli merA Gene for Enhanced Volatilization of Ionic Mercury  

Haque, Shafiul (Centre for Drug Research, Faculty of Pharmacy, University of Helsinki)
Zeyaullah, Md. (Gene Expression Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University))
Nabi, Gowher (Plant Biotechnology Laboratory, Department of Biotechnology, Jamia Hamdard (Deemed University))
Srivastava, P.S. (Plant Biotechnology Laboratory, Department of Biotechnology, Jamia Hamdard (Deemed University))
Ali, Arif (Gene Expression Laboratory, Department of Biotechnology, Jamia Millia Islamia (A Central University))
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.5, 2010 , pp. 917-924 More about this Journal
Abstract
The practicability of transgenic tobacco engineered to express bacterial native mercuric reductase (MerA), responsible for the transport of $Hg^{2+}$ ions into the cell and their reduction to elemental mercury ($Hg^0$), without any codon modification, for phytoremediation of mercury pollution was evaluated. Transgenic tobacco plants reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve the less toxic elemental mercury. Transformed tobacco produced a large amount of merA protein in leaves and showed a relatively higher resistance phenotype to $HgCl_2$ than wild type. Results suggest that the integrated merA gene, encoding mercuric reductase, a key enzyme of the bacterial mer operon, was stably integrated into the tobacco genome and translated to active MerA, which catalyzes the bioconversion of toxic $Hg^{2+}$ to the least toxic elemental $Hg^0$, and suggest that MerA is capable of reducing the $Hg^{2+}$, probably via NADPH as an electron donor. The transgenic tobacco expressing merA volatilized significantly more mercury than wild-type plants. This is first time we are reporting the expression of a bacterial native merA gene via the nuclear genome of Nicotiana tabacum, and enhanced mercury volatilization from tobacco transgenics. The study clearly indicates that transgenic tobacco plants are reasonable candidates for the remediation of mercurycontaminated areas.
Keywords
Bioaccumulation; mercuric reductase; merA; transgenic; phytoremediation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. U.S.A. 93: 3182-3187.   DOI   ScienceOn
2 Griffin, H. G., T. J. Foster, S. Silver, and T. K. Mishra. 1987. Cloning and DNA sequence of mercuric reductase and organomercurial resistance determinants of plasmids pDU1358. Proc. Natl. Acad. Sci. U.S.A. 84: 3112-3116.   DOI   ScienceOn
3 Holsters, M., D. De-Waele, A. Depicker, E. Messens, M. M. Van, and J. Schell. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181-187.   DOI   ScienceOn
4 Lyyra, S., R. B. Meagher, T. Kim, A. Heaton, P. Montello, R. S. Balish, and S. A. Merkle. 2007. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol. J. 5: 254-262.   DOI   ScienceOn
5 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
6 Summers, A. O. and S. Silver. 1972. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112: 1228-1236.
7 Summers, A. O. 1986. Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40: 607-634.   DOI   ScienceOn
8 Hussein, S. H., N. R. Oscar, T. Norman, and D. Henry. 2007. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environ. Sci. Technol. 41: 8439-8446.   DOI   ScienceOn
9 Kholodii, G. Y., O. V. Yuriera, O. L. Lomovskaya, Z. M. Gorlenko, S. Z. Mindlin, and V. G. Nikiforov. 1993. Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107.   DOI   ScienceOn
10 Komura, I. and K. Izaki. 1971. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistance strains of Escherichia coli. J. Biochem. 70: 885-893.   DOI
11 Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162.   DOI   ScienceOn
12 Nagata, T., A. Nakamura, T. Akizawa, and H. Pan-Hou. 2009. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol. Pharm. Bull. 32: 1491-1495.   DOI   ScienceOn
13 Ruiz, O. N., H. S. Hussein, N. Terry, and H. Daniell. 2003. Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132: 1344-1352.   DOI   ScienceOn
14 Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher. 1999. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana plants confers resistance to organomercurials. Proc. Natl. Acad. Sci. U.S.A. 96: 6808-6813.   DOI   ScienceOn
15 Ruiz, O. N. and H. Daniell. 2009. Genetic engineering to enhance mercury phytoremediation. Curr. Opin. Biotech. 20: 213-219.   DOI   ScienceOn
16 Rugh, C. L., J. F. Senecoff, R. B. Richard, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925-928.   DOI   ScienceOn
17 Rugh, C. L. 2001. Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Dev. Biol. Plant 37: 321-325.
18 Brown, N. L., T. Misra, J. N. Winnie, A. Schmidt, M. Seiff, and S. Seiff. 1986. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: Further evidence for mer genes, which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202: 143-151.   DOI
19 Carty, A. J. and S. F. Malone. 1979. The chemistry of mercury in biological systems, pp. 433-479. In J. O. Nriagu (ed.). The Bioqeochemistry of Mercury in the Elsevier Biomedical, Amsterdam.
20 Che, D., R. B. Meagher, A. C. Heaton, A. Lima, C. L. Rugh, and S. A. Merkle. 2003. Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol. J. 1: 311-319.   DOI   ScienceOn
21 Edwards, K., C. Johnstone, and C. Thompson. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349.   DOI   ScienceOn
22 Gupta, N. and A. Ali. 2004. Mercury volatilization by R factors systems in Escherichia coli isolated from aquatic environments of India. Curr. Microbiol. 48: 88-96.   DOI   ScienceOn
23 Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
24 Hanahan, D. 1983. Studies on transformation of E. coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI
25 Heaton, A. C. P., C. L. Rugh, T. Kim, N. J. Wang, and R. B. Meagher. 2003. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 22: 2940-2947.   DOI   ScienceOn
26 He, Y. K., J. G. Sun, Z. X. Feng, M. Czako, and L. Marton. 2001. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 11: 231-236.   DOI   ScienceOn
27 Baya, A. M., P. R. Brayton, N. L. Brown, D. J. Ganmes, E. Russels, and R. K. Colwell. 1986. Coincident plasmid and antimicrobial resistance in marine bacterial isolates from polluted and unpolluted Atlantic Ocean samples. Appl. Environ. Microbiol. 5: 1285-1292.