DOI QR코드

DOI QR Code

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan (Department of Biological Sciences, Dankook University) ;
  • Park, Soon-Ik (Department of Biological Sciences, Dankook University) ;
  • Yoe, Jee-Hyun (Department of Biological Sciences, Dankook University) ;
  • Yoe, Sung-Moon (Department of Biological Sciences, Dankook University)
  • Received : 2010.08.05
  • Accepted : 2010.11.12
  • Published : 2011.03.31

Abstract

Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Keywords

References

  1. Araujo AP, Oliva G, Henrique-Silva F, Garratt RC, Caceres O, Beltramini LM. 2000. Influence of the histidine tail on the structure and activity of recombinant chlorocatechol 1,2-dioxygenase. Biochem Biophys Res Commun. 272:480-484. https://doi.org/10.1006/bbrc.2000.2802
  2. Davis GD, Elisee C, Newham DM, Harrison RG. 1999. New fusion protein systems designed 289 to give soluble expression in Escherichia coli. Biotechnol Bioeng. 65:382-388. https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.0.CO;2-I
  3. Engstrom A, Xanthopoulos KG, Boman HG, Bennich H. 1985. Amino acid and cDNA sequences of lysozyme from Hyalophora cecropia. EMBO J. 4:2119-2122.
  4. Esposito D, Chatterjee DK. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech. 17:353-358. https://doi.org/10.1016/j.copbio.2006.06.003
  5. Georgiou G, Valax P. 1996. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotech. 7:190-197. https://doi.org/10.1016/S0958-1669(96)80012-7
  6. Gillespie JP, Kanost MR, Trenczek T. 1997. Biological mediators of insect immunity. Annu Rev Entomol. 42:611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  7. Hannig G, Makrides SC. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16:54-60.
  8. Hikima S, Hikima JI, Rojtinnakorn J, Hirono I, Aoki T. 2003. Characterization and function 301 of kuruma shimp lysozyme possessing lytic activity againts Vibrio species. Gene. 302 316:187-195.
  9. Hoffmann JA, Hetru C, Reichhart JM. 1993. The humoral antibacterial response of Drosophila. FEBS Lett. 325:63-66. https://doi.org/10.1016/0014-5793(93)81414-U
  10. Hultmark D. 1996. Insect lysozymes. EXS. 75:87-102.
  11. Hultmark D, Engstrom A, Anderson K, Steiner H, Bennich H, Boman HG. 1983. Insect immunity: attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2:571-576.
  12. Jain D, Nair DT, Swaminathan GJ, Abraham EG, Nagaraju J, and Salunke DM. 2001 310 Structure of the induced antibacterial protein from Tasar silkworm, Anthemea mylitta: 311 Implications to molecular evolution. J Biol Chem. 276:41377-41382. https://doi.org/10.1074/jbc.M104674200
  13. Jenny RJ, Mann KG, Lundblad RL. 2003. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif. 31:1-11. https://doi.org/10.1016/S1046-5928(03)00168-2
  14. Jolles P, Jolles J. 1984. What's new in lysozyme research? Mol Cell Biochem. 63:165-189.
  15. Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous 316 proteins in Escherichia coli. Curr Opin Biotech. 6:494-500. https://doi.org/10.1016/0958-1669(95)80082-4
  16. Kim JW, Yoe SM. 2008. Cloning and prokaryotic expression of c-type lysozyme gene from Agrius convolvui. Animal Cells and Systems. 12:149-155. https://doi.org/10.1080/19768354.2008.9647168
  17. Kim JW, Yoe SM 2009. Isolation and characterization of the c-type lysozyme gene from the common cutworm, Spodoptera litura. Animal Cells and Systems. 13:345-350. https://doi.org/10.1080/19768354.2009.9647228
  18. LaVallie ER, McCoy JM. 1995. Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol. 6:501-506. https://doi.org/10.1016/0958-1669(95)80083-2
  19. Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu Rev Immunol. 25:697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  20. Liu Y, Zhao TJ, Yan YB, Zhou HM. 2005. Increase of soluble expression in Escherichia coli cytoplasm by a protein disulfide isomerase gene fusion system. Protein Expr Purif. 44:155-161. https://doi.org/10.1016/j.pep.2005.03.030
  21. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 60:512-538.
  22. Matsuura A, Yao M, Aizawa T, Koganesawa N, Masaki K, Miyazawa M, Demura M, Tanaka I, Kawano K, Nitta K. 2002. Structural analysis of an insect lysozyme exhibiting catalytic efficiency at low temperatures. Biochemistry. 41:12086-12092. https://doi.org/10.1021/bi016099j
  23. McNulty DE, Claffee BA, Huddleston MJ, Kane JE 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif. 27:365-374. https://doi.org/10.1016/S1046-5928(02)00610-1
  24. Nomine Y, Ristriani T, Laurent C, Lefevre J, Weiss E, Trave G. 2001. A strategy for optimizing the mondispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng. 14:297-305. https://doi.org/10.1093/protein/14.4.297
  25. Powning RF, Davidson WJ. 1973. Studies on insect bacteriolytic enzymes-I. Lysozyme in haemolymph of Galleria mellonella and Bombyx mori. Comp Biochem Phys B. 45:669-681. https://doi.org/10.1016/0305-0491(73)90205-8
  26. Regel R, Matioli SR, Terra WR. 1998. Molecular adaptation of Drosophila melanogaster lysozymes to a digestive function. Insect Biochem Molec. 28:309-319. https://doi.org/10.1016/S0965-1748(97)00108-2
  27. Rossignol PA, Lueders AM. 1986. Bacteriolytic factor in the salivary glands of Aedes aegypti. Comp Biochem Phys B. 83:819-822. https://doi.org/10.1016/0305-0491(86)90153-7
  28. Rudolph R, Lilie H. 1996. In vitro folding of inclusion body proteins. FASEB J 10:49-56. https://doi.org/10.1096/fasebj.10.1.8566547
  29. Saluta M, Bell PA. 1998. Troubleshooting GST fusion protein expression in E. coli. Life Sci News. 1:1-3.
  30. Smith DB, Johnson KS. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathion S-transferase. Gene. 67:31-40. https://doi.org/10.1016/0378-1119(88)90005-4
  31. Sonomi H, Junichi H, Jiraporn R, Ikuo H, Takashi A. 2003. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene. 316:187-195. https://doi.org/10.1016/S0378-1119(03)00761-3
  32. Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 4:1. https://doi.org/10.1186/1475-2859-4-1
  33. Spies AG, Karlinsey JE, Spence KD. 1986. Antibacterial hemolymph proteins of Manduca sexta. Comp Biochem Phys. 83:125-133. https://doi.org/10.1016/0300-9629(86)90099-X
  34. Stoscheck CM. 1990. Quantitation of protein. Methods Enzymol. 182:50-69.
  35. Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 76:4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  36. van den Berg B, Ellis RJ, Dobson CM. 1999. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18:6927-6933. https://doi.org/10.1093/emboj/18.24.6927
  37. Waugh DS. 2005. Making the most of affinity tags. Trends Biotechnol. 23:316-320. https://doi.org/10.1016/j.tibtech.2005.03.012
  38. Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, Lehrer RI, Wagar E. 2000. Evaluation of the inactivation of infectious herpes simplex virus by host defense peptides. Eur J Clin Microbiol. 19:187-194. https://doi.org/10.1007/s100960050457
  39. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415:389-395. https://doi.org/10.1038/415389a

Cited by

  1. Overexpression and purification of recombinant lysozyme from Agrius convolvuli expressed as inclusion body in Escherichia coli vol.16, pp.6, 2011, https://doi.org/10.1080/19768354.2012.706638
  2. Expression, cDNA cloning, and characterization of the antibacterial peptide cecropin D fromAgrius convolvuli vol.17, pp.1, 2011, https://doi.org/10.1080/19768354.2013.769465
  3. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic vol.10, pp.12, 2011, https://doi.org/10.3390/antibiotics10121534