Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.11.1526

Localization of Translation Initiation Factors to the Postsynaptic Sites  

Choi, Myoung-Kwon (Department of Anatomy, College of Medicine, Dongguk University)
Park, Sung-Dong (Department of General Thoracic and Cardiovascular Surgery, College of Medicine, Dongguk University)
Park, In-Sick (Department of Anatomy, College of Oriental Medicine)
Moon, Il-Soo (Department of Anatomy, College of Medicine, Dongguk University)
Publication Information
Journal of Life Science / v.21, no.11, 2011 , pp. 1526-1531 More about this Journal
Abstract
Local protein synthesis in neuronal dendrites is important for site-specific regulation of synaptic plasticity. In this study, we investigated whether translation initiation factors (eIFs) are present at the postsynaptic sites. High resolution confocal microscopy showed that the eIF4E and eIF4G (which bind the 5'-terminal mRNA cap), eIF5 (which is important during the 3' direction scanning to find an initiation codon), eIF6 (which mediates upregulation of translation by external stimuli), and eIF5A (which mediate translation upregulation under adverse conditions) were localized to the post-synaptic sites. Immunoblot and detergent extraction experiments also indicated that these eIFs were present in the synapse in association with the postsynaptic density (PSD). Our data provide evidence for the strategic positioning of eIFs at the postsynaptic site for initiation of translation in diverse situations.
Keywords
eIF; neuron; PSD; spine; translation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Imataka, H., A. Gradi, and N. Sonenberg. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480-7489.   DOI
2 Jennings, M. D. and G. D. Pavitt. 2010. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature 465, 378-381.   DOI   ScienceOn
3 Kahvejian, A., Y. V. Svitkin, R. Sukarieh, M. N. M'Boutchou, and N. Sonenberg. 2005. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19, 104-113.   DOI   ScienceOn
4 Kang, H. and J. W. Hershey. 1994. Effect of initiation factor eiF5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934-3940.
5 Krichevsky, A. M. and K. S. Kosik. 2001. Neuronal RNA granules: a link between RNA localization and stimulation- dependent translation. Neuron 32, 683-696.   DOI   ScienceOn
6 Li, C. H., T. Ohn, P. Ivanov, S. Tisdale, and P. Anderson. 2010. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly. PLoS One 5, e9942.   DOI   ScienceOn
7 Aakalu, G., W. B. Smith, N. Nguyen, C. Jiang, and E. Schuman. 2001. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 89-502.
8 Asaki, C., N. Usuda, A. Nakazawa, K. Kametani, and T. Suzuki. 2003. Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res. 972, 168-176.   DOI   ScienceOn
9 Benne, R. and J. W. Hershey. 1978. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078-3087.
10 Bliss, T. V. and G. L. Collingridge. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.   DOI   ScienceOn
11 Bodian, D. 1965. A suggestive relationship of nerve cell RNA with specific synaptic sites. Proc. Natl. Acad. Sci. USA 53, 418-425.   DOI   ScienceOn
12 Brewer, G. J., J. R. Torricelli, E. K. Evege, and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576.   DOI   ScienceOn
13 Cho, K. O, C. A. Hunt, and M. B. Kennedy. 1992. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.   DOI   ScienceOn
14 Cho, S. J., J. S. Jung, B. H. Ko, I. Jin, and I. S. Moon. 2004. Presence of translation elongation factor-1A (eEF1A) in the excitatory postsynaptic density of rat cerebral cortex. Neurosci Lett. 366, 29-33.   DOI   ScienceOn
15 Gandin, V., A. Miluzio, A. M. Barbieri, A. Beugnet, H. Kiyokawa, P. C. Marchisio, and S. Biffo. 2008. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455, 684-688.   DOI   ScienceOn
16 Moon, I. S., S. J. Cho, J. S. Jung, I. S. Park, D. K. Kim, J. T. Kim, B. H. Ko, and I. Jin. 2004. Presence of translation elongation factor-1A in the rat cerebellar postsynaptic density. Neurosci. Lett. 362, 53-56.   DOI   ScienceOn
17 Unbehaun, A., S. I. Borukhov, C. U. Hellen, and T. V. Pestova. 2004. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 18, 3078-3093.   DOI   ScienceOn
18 von der Haar, T., J. D. Gross, G. Wagner, and J. E. McCarthy. 2004. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat. Struct. Mol. Biol. 11, 503-511.   DOI   ScienceOn
19 Mathews, M. B., N. Sonenberg, and J. W. B. Hershey. 2000. Origins and principles of translational control, pp. 1-32, In Sonenberg, N., J. W. B. Hershey, and M. B. Mathews. (eds.), Translational Control in Gene Expression. Cold Spring Harbor Laboratory Press, New York, NY.
20 Miluzio, A., A. Beugnet, V. Volta, and S. Biffo. 2009. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep. 10, 459-465.   DOI   ScienceOn
21 Moon, I. S., S. J. Cho, I. Jin, and R. Walikonis. 2007. A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
22 Steward, O. 1983. Alterations in polyribosomes associated with dendritic spines during the reinnervation of the dentate gyrus of the adult rat. J. Neurosci. 3, 177-188.
23 Okabe, S. 2007. Molecular anatomy of the postsynaptic density. Mol. Cell Neurosci. 34, 503-518.   DOI   ScienceOn
24 Sheng, M. and C. C. Hoogenraad. 2007. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823-847.   DOI   ScienceOn
25 Skup, M. 2008. Dendrites as separate compartment-local protein synthesis. Acta Neurobiol. Exp. 68, 305-321.
26 Steward, O. and B. Fass. 1983. Polyribosomes associated with dendritic spines in the denervated dentate gyrus: evidence for local regulation of protein synthesis during reinnervation. Prog. Brain Res. 58, 131-136.   DOI
27 Steward, O. and W. B. Levy. 1982. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284-291.
28 Gingras, A. C., B. Raught, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963.   DOI   ScienceOn
29 Goelet, P., V. F. Castellucci, S. Schacher, and E. R. Kandel. 1986. The long and the short of long-term memory - a molecular framework. Nature 322, 419-422.   DOI   ScienceOn
30 Goslin, K., H. Assmussen, and G. Banker. 1998. Rat hippocampal neurons in low density culture, pp. 339-370. In Banker, G. and K. Goslin (eds.), Culturing Nerve Cells, 2nd eds., MIT Press, Cambridge, MA.
31 Gross, J. D., N. J. Moerke, von der T. Haar, A. A. Lugovskoy, A. B. Sachs, J. E. McCarthy, and G. Wagner. 2003. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739-750.   DOI   ScienceOn