• Title/Summary/Keyword: Cobalt oxide

Search Result 233, Processing Time 0.03 seconds

Synthesis of LiCoO2 Powders using Recycled Cobalt Precursors from Waste WC-Co Hard Metal (폐 WC-Co계 초경합금에서 추출된 코발트 재생 원료를 이용한 LiCoO2 입자 합성 연구)

  • Yang, Hee-Seung;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.277-282
    • /
    • 2011
  • [ $LiCoO_2$ ] a cathode material for lithium rechargeable batteries, was prepared using recycled $Co_3O_4$. First, the cobalt hydroxide powders were separated from waste WC-Co hard metal with acid-base chemical treatment, and then the impurities were eliminated by centrifuge method. Subsequently, $Co_3O_4$ powders were prepared by thermal treatment of resulting $Co(OH)_2$. By adding a certain amount of $Li_2CO_3$ and $LiOH{\cdot}H_2O$, the $LiCoO_2$ was obtained by sintering for 10 h in air at $800^{\circ}C$. The synthesized $LiCoO_2$ particles were characterized by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analysis.

Decontamination of Metal Surface by Reactive Cold Plasma

  • YUN Sang-pil;JEON Sang-hwan;KIM Yang-saa
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.300-315
    • /
    • 2005
  • Recently plasma surface-cleaning or surface-etching techniques have been focused in the respect of decontamination of spent or used nuclear parts and equipment. In this study decontamination rate of metallic cobalt surface was experimentally investigated via its surface etching rate with a $CF_4-O_2$ mixed gas plasma and metallic surface wastes of cobalt oxides were simulated and decontaminated with $NF_3$ - Ar mixed gas plasma. Experimental results revealed that a mixed etchant gas with about $80{\%}\;CF_4-20{\%}\;O_2$ gives the highest reaction rate of cobalt disk and the rate reaches with a negative 300 DC bias voltage up to $0.43\;{\mu}m$/min at $380^{\circ}C$ and $20{\%}\;NF_3-80\%$ Ar mixed gas gives $0.2\;{\mu}m$/min of reaction rate of cobalt oxide film.

  • PDF

Preparation of Cobalt-Substituted Iron Oxide Powder from Organometallic Precursors (Ⅱ) (유기금속 전구체로부터 코발트 치환 산화철 분말 제조 (Ⅱ))

  • Kim, Jeong Su;Gang, Han Cheol;Hong, Yang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 1994
  • Ultrafine cobalt-substituted iron oxide particles were prepared by the thermal decomposition and oxidation of the new organometallic precursor, $Co_xFe_{1-x}(N_2H_3COO)_2(N_2H_4)_2$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.10, 1.00). The organometallic precursors were synthesized by the reaction of Co(II) and Fe(II) ion in a mole ratio of x : 1-x with hydrazinocarboxylic acid, and characterized by quantitative analysis, elemental analysis and infrared spectroscopy. The mechanistic study on the thermal decomposition of the organometallic precursors was performed by TG-DTG and DSC. The cobalt-substituted iron oxide particles were obtained by the heat treatment of the precursors at $350^{\circ}C$ and $450^{\circ}C$ for six hours in air. The prepared iron oxide was found to have two phases such as ${\gamma}-Fe_2O_3$ and a mixture of ${\gamma}-Fe_2O_3\;and\;{\alpha}-Fe_2O_3$ at $350^{\circ}C$ and $450^{\circ}C$ respectively. The particle shape was equiaxial and the particle size was less than 0.05 ${\mu}m.$ The coercivity and squareness of the cobalt substituted iron oxide particles increased with increasing cobalt content. Both coercivity and squareness showed higher values at $450^{\circ}C.$

  • PDF

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

A STDUY ON THE SURFACE MORPHOLOGY AND BOND STRENGTH OF DENTURE BASE RESIN TO COBALT-CHROMIUM ALLOY AFTER VARYING MODES OF SURFACE TREATMENT (COBALT-CHROMIUM 합금의 표면처리방법에 따른 레진 의치상의 접착강도 및 표면상태에 대한 연구)

  • Vang, Mong-Sook;Park, Young-Jon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.78-94
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of various treatments on denture base resin to metal bond for cobalt-chromium alloy. The metal surface was treated as follows. Group 1 : Sandblasted with $50{\mu}m$ aluminum oxide. Group 2 : Sandblasted with $250{\mu}m$ aluminum oxide. Group 3 : Sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating. Group 4 : Electrochemically etched. Group 5 : treated with oxidizing solution. Group 6 : Beaded with $200{\mu}m$ retention structure and followed by silicoating. All specimens were applied with 4-META resin and were thermocycled 1000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of various surface treatments on the bond strength between 4-META resin and metal interface were measured by using the universal testing machine. All specimens were observed with SEM. The results were as follows 1. The bond strength of 4-META resin were significantly higher to Co-Cr alloy. 2. The bond strength decreased in the following orders : group 6, group 3, groups 1 and 2, group 4, group 5 and there was no statistically significant difference in bond strength among groups 1 and 2.(p>0.05) 3. The bond strength of cobalt-chromium alloy to 4-META resin were not significantly different.(p>0.05) 4. The treated surface of groups 1, 2 and 3 has more fine undercut than that of groups 4 and 5 with SEM. 5. Stable adhesion can be achieved when mechanically roughened metal surface by sandblasting than treating in an electrochemical etching and an oxidizing solution with potassium manganate.

  • PDF

A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers (Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구)

  • ;;;;;;;Kazuyuki Fujihara
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 2000
  • We investigated the role of the capping layers in the formation of the cobalt silicide in Co/Si systems with TiN and Ti capping layers and without capping layers. The Co/Si interfacial reactions and the phase transformations by the rapid thermal annealing (RTA) processes were observed by sheet resistance measurements, XRD, SIMS and TEM analyses for the clean silicon substrate as well as for the chemically oxidized silicon substrate by $H_2SO_4$. We observed the retardation of the cobalt disilicide formation in the Co/Si system with Ti capping layers. In the case of Co/$SiO_2$/Si system, cobalt silicide was formed by the Co/Si reaction due to with the dissociation of the oxide layer by the Ti capping layers.

  • PDF