• 제목/요약/키워드: Coating films

검색결과 1,367건 처리시간 0.031초

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • 제29권2호
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion (불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작)

  • Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.639-643
    • /
    • 2021
  • In this study, fluorinated ethylene propylene (FEP) nanoparticle as an adhesive for fabricating a three-dimensional multilayered microfluidic device was studied. The formation of evenly distributed FEP nanoparticles layer with 3 ㎛ in thickness on substrates was achieved by simple spin coating of FEP dispersion solution at 1500 rpm for 30 s. It is confirmed that FEP nanoparticles transformed into a hydrophobic thin film after thermal treatment at 300 ℃ for 1 hour, and fabricated polyimide film-based microfluidic device using FEP nanoparticle was endured pressure up to 2250 psi. Finally, a three-dimensional multilayered microfluidic device composed of 16 microreactors, which are difficult to fabricate with conventional photolithography, was successfully realized by simple one-step alignment of FEP coated nine polyimide films. The developed three-dimensional multilayered microfluidic device has the potential to be a powerful tool such as high-throughput screening, mass production, parallelization, and large-scale microfluidic integration for various applications in chemistry and biology.

Corrosion resistance at high temperature condition of Cr Films Formed on hot-dip Al-Si plated steel sheet (용융Al-Si도금 강재에 형성한 Cr 막의 고온 환경 중 내식특성)

  • Gang, Min-Ju;Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • 제55권6호
    • /
    • pp.448-459
    • /
    • 2022
  • Generally, steel is the most commonly used in the industry because of good strength, processability and cost-effectiveness. Steel can be surface-treated such as coating or used as an alloy by adding elements such as Cr, Ni, Zr, and Al to increase corrosion resistance. However, even if steel is used in same environment corrosion resistance is sharply lowered when it is exposed to a high temperature for a fixed or extended period of time due to an overload or other factors. In particular, the use of hot-dip aluminized plated steel, which is used in high-temperature atmospheres, is increasing due to the surface Al2O3 oxide film. This steel necessitates an urgent solution as issues of corrosion resistance limitations often appear. It is an important issue that not only cause analysis but also the research for the surface treatment method that can be solved. Thus, in this study, Cr in which it is expected to be effective in corrosion resistance and heat resistance attempted to deposit on hot dip aluminized plated steel with PVD sputtering. And it was possible to present the surface treatment application of various types of industrial equipment exposed to high temperature and basic design guidelines for use by confirming the corrosion resistance of hot dip Al-Si plated steel with Cr film deposited at high temperature.

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction (p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가)

  • Yang, Yijun;Maeng, Bohee;Jung, Dong Geon;Lee, Junyeop;Kim, Yeongsam;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • 제31권5호
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

Diffraction-efficiency Correction of Polarization-independent Multilayer Dielectric Gratings (무편광 유전체 다층박막 회절격자의 효율 보정)

  • Cho, Hyun-Ju;Kim, Gwan-Ha;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Sang-In;Cho, Joonyoung;Kim, Hyun Tae
    • Korean Journal of Optics and Photonics
    • /
    • 제33권1호
    • /
    • pp.22-27
    • /
    • 2022
  • We fabricate a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. Due to the refractive index and thickness error of the manufactured thin films, the diffraction efficiency of the fabricated diffraction grating was lower than that of the design. The causes of the errors were analyzed, and it was confirmed through simulation that diffraction efficiency could be compensated through an additional coating on the manufactured diffraction grating. As a result of sputtering an additional Ta2O5 layer on a fabricated diffraction grating, the diffraction efficiency was corrected and a maximum 91.7% of polarization-independent diffraction efficiency was obtained.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제34권1호
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

Studies on the Anodic Oxidation Behavior of Methanol and L-Ascorbic Acid by Using Glassy Carbon Electrodes Modified with Inorganic-Metal Polymeric Films (무기 금속 고분자 막을 도포시킨 유리질 탄소전극을 이용한 메탄올과 L-ascorbic acid의 양극 산화 거동에 관한 연구)

  • Yoo, Kwang-Sik;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • 제11권5호
    • /
    • pp.347-352
    • /
    • 1998
  • A study was carried out on the elelctrochemical characteristics of chemically modified electrodes (CMEs) by cyclic voltammetry. Fabrication of CMEs was made by coating with mixed valence (mv) inorganic-metal polymeric films on the glassy carbon electrode surface by potential cycling. Anodic oxidation behavior of methanol and L-ascorbic acid was studied by using CMEs working electrode. Deposition of films such as mv ruthenium oxo/ruthenium cyanide film (mv Ru-O/CN-Ru), mv ruthenium oxo/ferrocyanide film (mv Ru-O/$Fe(CN)_6$), and mv ruthenium oxo/ruthenium cyanide/Rhodium film (mv Ru-O/CN-Ru/Rh) was obtained to coat by scan rate of 50 mV/sec within the specified potential range (-0.5V ~ +1.2V). Film thickness was controlled by the repeat of the potential cycling. Anodic oxidation behavior of methanol was as follow. Calibration graph by using mv Ru-O/CN-Ru film showed linearly from 10 mM to 80 mM MeOH with slope factor of $-7.552{\mu}A/cm^2$. Although slope factor by using mv Ru-O/$Fe(CN)_6$ film was $-5.13{\mu}A/cm^2$, yet linear range of calibration graph could be extended from 10 mM to 100 mM MeOH. Anodic oxidation behavior of L-ascorbic acid was studied by mv Ru-O/CN-Ru film on the glassy carbon electrode and the glassy carbon electrode with Rh film, Glassy carbon electrode modified with Ru polymeric film was showed better sensitivity than the Rh-glassy carbon modified electrode (mv Ru-O/CN-Ru/Rh). Calibration graph was linear from 0.1 mM to 5 mM L-ascorbic acid by using glassy carbon electrode modified with Ru polymeric film. Solpe factor and relative coefficient are $-84.78{\mu}A/mM$ and 0.998, respectively.

  • PDF

Structural and optical properties of Ni-substituted spinel $LiMn_2O_4$ thin films (니켈 치환된 스피넬 LiMn2O4 박막의 구조적, 광학적 성질)

  • Lee, Jung-Han;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • 제15권5호
    • /
    • pp.527-533
    • /
    • 2006
  • Spinel $LiNi_xMn_{2-x}O_4$ thin films were synthesized up to x = 0.9 by a sol-gel method employing spin-coating. The Ni-substituted films were found to maintain cubic structure at low x but to exhibit tetragonal structure for $x{\geq}0.6$. Such cubic-tetragonal phase transition indicates that $Ni^{3+}(d7)$ ions with low-spin $(t_{2g}^6,e_g^1)$ state occupy the octahedral sites of the compound, thus being subject to the Jahn-Teller distortion. By x-ray photoelectron spectroscopy both $Ni^{2+}$ and $Ni^{3+}$ ions were detected. Optical properties of the $LiNi_xMn_{2-x}O_4$ films were investigated by spectroscopic ellipsometry (SE) in the visible?ultraviolet range. The measured dielectric function spectra by SE mainly consist of broad absorption structures attributed to charge-transfer (CT) transitions, $O^{2-}(2p){\rightarrow}Mn^{4+}(3d)$ for 1.9 $(t_{2g})$ and $2.8{\sim}3.0$ eV $(e_g)$ structures and $O^{2-}(2p){\rightarrow}Mn^{3+}(3d)$ for 2.3 $(t_{2g})$ and $3.4{\sim}3.6$ eV $(e_g)$ structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as due to d-d crystal-field transitions within the octahedral $Mn^{3+}$ ion. The strengths of these absorption structures are reduced by the Ni substitution. Rapid reduction of the CT transition strength involving the eg states for x = 0.6 is attributed to the reduced wavefunction overlap between the $e_g$ and the $O^{2-}(2p)$ states due to the tetragonal extension of the lattice constant by the Jahn-Teller effect.