DOI QR코드

DOI QR Code

Diffraction-efficiency Correction of Polarization-independent Multilayer Dielectric Gratings

무편광 유전체 다층박막 회절격자의 효율 보정

  • 조현주 ((주)옵토닉스) ;
  • 김관하 (한국폴리텍대학 성남캠퍼스 반도체소재응용과) ;
  • 김동환 ((주)한화 레이저사업부 레이저개발팀) ;
  • 이용수 ((주)한화 레이저사업부 레이저개발팀) ;
  • 김상인 ((주)한화 레이저사업부 레이저개발팀) ;
  • 조준용 ((주)한화 레이저사업부 레이저개발팀) ;
  • 김현태 ((주)한화 레이저사업부 레이저개발팀)
  • Received : 2021.11.26
  • Accepted : 2021.12.06
  • Published : 2022.02.25

Abstract

We fabricate a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. Due to the refractive index and thickness error of the manufactured thin films, the diffraction efficiency of the fabricated diffraction grating was lower than that of the design. The causes of the errors were analyzed, and it was confirmed through simulation that diffraction efficiency could be compensated through an additional coating on the manufactured diffraction grating. As a result of sputtering an additional Ta2O5 layer on a fabricated diffraction grating, the diffraction efficiency was corrected and a maximum 91.7% of polarization-independent diffraction efficiency was obtained.

격자의 구조가 간단하고 격자의 대조비가 낮은 SBC 시스템 구성을 위한 무편광 유전체 다층박막 회절격자를 제작하였다. 제작된 박막의 굴절률과 두께 오차로 인하여, 제작된 회절격자의 회절 효율은 설계보다 낮은 값을 나타내었다. 오차를 발생시킨 원인을 분석하고, 제작된 회절격자 위에 추가의 코팅을 통하여 회절 효율 보정이 가능함을 시뮬레이션을 통하여 확인하였다. 시뮬레이션 결과를 확인하기 위하여 제작된 회절격자 위에 Ta2O5 추가층을 제작하고 회절격자를 측정한 결과 회절 효율 보상이 이루어졌으며, 최고 91.7%의 무편광 회절 효율을 얻었다.

Keywords

Acknowledgement

본 연구는 (주)한화의 지원과 과기부 나노팹시설활용지원사업으로 수행되었으며, 이에 감사를 드립니다.

References

  1. T. H. Loftus, A. M. Thomas, P. R. Hofman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron. 13, 487-497 (2007). https://doi.org/10.1109/JSTQE.2007.896568
  2. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, X. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all- fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016). https://doi.org/10.1364/OE.24.012063
  3. M. Jeon, Y. Jung, J. Park, H. Jeong, J. W. Kim, and H. Seo, "High-power Quasi-continuous wave operation of incoherently combined Yb-doped fiber lasers," Curr. Opt. Photonics 1, 525-528 (2017). https://doi.org/10.3807/COPP.2017.1.5.525
  4. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. ten Have, K. Ludewight, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). https://doi.org/10.1364/OE.17.001178
  5. T. Y. Fan, "Laser beam combining for high-power, high-radiance source," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
  6. H.-J. Cho, K.-H. Lee, S.-I. Kim, J.-H. Lee, H.-T. Kim, W.- S. Kim, D. H. Kim, Y.-S. Lee, S. Kim, T. Y. Kim, and C. K. Hwangbo, "Analysis on design and fabrication of highdiffraction- efficiency multilayer dielectric gratings," Curr. Opt. Photonics 2, 125-133 (2018). https://doi.org/10.3807/COPP.2018.2.2.125
  7. L. Li, Q. Liu, J. Chen, L. Wang, Y. Jin, Y. Yang, and J. Shao, "Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system," Opt. Commun. 385, 97-103 (2017). https://doi.org/10.1016/j.optcom.2016.10.048
  8. H. Cao, J. Wu, J. Yu, and J. Ma, "High-efficiency polarizationindependent wide band multilayer dielectric reflective bulletalike cross section fused silica beam combining grating," Appl. Opt. 57, 900-904 (2018). https://doi.org/10.1364/AO.57.000900
  9. J. Chen, Y. Jin, and J. Shao, "Design of broadband polarizationindependent multilayer dielectric grating," Proc. SPIE 10339, 1033911 (2017).
  10. J. Chen, Y. Zhang, Y. Wang, F. Kong, H. Huang, Y. Wang, Y. Jin, P. Chen, J. Xu, and J. Shao, "Polarization-independent broadband beam combining gratings with over 98% measured diffraction efficiency from 1023 to 1080 nm," Opt. Lett. 42, 4016-4019 (2017). https://doi.org/10.1364/OL.42.004016
  11. H.-J. Cho, G.-H. Kim, D. H. Kim, Y.-S. Lee, S.-I. Kim, J. Cho, and H.-T. Kim, "Design of a simple structured high efficiency polarization-independent multilayer dielectric grating for spectral beam combining," Korean J. Opt. Photonics 31, 169-175 (2020). https://doi.org/10.3807/KJOP.2020.31.4.169
  12. J. E. Harvey and C. L. Vernold, "Description of diffraction grating behavior in direct cosine space," Appl. Opt. 37, 8158-8159 (1998). https://doi.org/10.1364/AO.37.008158
  13. J. E. Harvey and R. N. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Opt. Eng. 58, 087105 (2019).
  14. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, "High-efficiency multilayer dielectric diffraction gratings," Opt. Lett. 20, 940-942 (1995). https://doi.org/10.1364/OL.20.000940
  15. J. Neauport, E. Lavastre, G. Raze, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Fesserouer, "Effect of electric field on laser induced damage threshold of multilayer dielectric gratings," Opt. Express 15, 12508-12522 (2007). https://doi.org/10.1364/OE.15.012508
  16. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, "Large area high efficiency broad bandwidth 800 nm dielectric gratings for high energy laser pulse compression," Opt. Express 17, 23809-23816 (2009). https://doi.org/10.1364/OE.17.023809
  17. P. J. Matrin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, "Ion-beam-assisted depoition of thin films," Appl. Opt. 22, 178-184 (1983). https://doi.org/10.1364/AO.22.000178
  18. J. R. McNeil, A. C. Barron, S. R. Wilson, and W. C. Herrmann, "Ion-assisted deposition of optical thin films: low energy vs high energy bombardment," Appl. Opt. 23, 552-559 (1984). https://doi.org/10.1364/AO.23.000552
  19. N. Savvides, "Ion-assisted deposition and metastable structures," Thin Solid Films 163, 13-32 (1988). https://doi.org/10.1016/0040-6090(88)90406-3
  20. H. A. Macleod, Thin film optical filters, 5th ed. (CRC Press, USA, 2018), pp. 188-195.
  21. H.-J. Cho, Practical Optical thin films (Books-Hill, Korea, 2015), p. 30.
  22. A. Finzel, F. Koch, G. Dornberg, D. Lehr, F. Frost, and T. Glaser, "Reactive ion beam etching of highly dispersive, highefficiency transmission gratings for the VIS range," Opt. Eng. 58, 092614 (2019).