• Title/Summary/Keyword: CoV

Search Result 4,081, Processing Time 0.032 seconds

Photoconductivity spectra of undoped and co-doped $Cd_4GeSe_6$ single crystals ($Cd_4GeSe_6$$Cd_4GeSe_6:Co^{2+}$ 단결정의 광전도도 특성)

  • 김덕태
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 1996
  • Optical absorption and photoconductivity spectra of undoped and Co-doped Cd$_{4}$GeSe$_{6}$ single crystals, grown by the chemical transport reaction using iodine as a transporting agent, were investigated. At 20K, the optical energy gaps of the single crystals are 1.934eV for Cd$_{4}$GeSe$_{6}$ and 1.815eV for Cd$_{4}$GeSe$_{6}$ :Co$^{2+}$. The photoconductivity spectra of these single crystals were closely investigated over the temperature range 20-290K. At 20K, the photoconductivity peaks were located at 1.797eV, 1.347eV for Cd$_{4}$GeSe$_{6}$ and 1.815eV, I,.57eV, 1.46eV and 1.38eV for Cd$_{4}$GeSe$_{6}$ :Co$^{2+}$, respectively.ely.

  • PDF

SARS-CoV-2 infection induces expression and secretion of lipocalin-2 and regulates iron in a human lung cancer xenograft model

  • Sangkyu Park;Dongbum Kim;Jinsoo Kim;Hyung-Joo Kwon;Younghee Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.669-674
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to various clinical symptoms including anemia. Lipocalin-2 has various biological functions, including defense against bacterial infections through iron sequestration, and it serves as a biomarker for kidney injury. In a human protein array, we observed increased lipocalin-2 expression due to parental SARS-CoV-2 infection in the Calu-3 human lung cancer cell line. The secretion of lipocalin-2 was also elevated in response to parental SARS-CoV-2 infection, and the SARS-CoV-2 Alpha, Beta, and Delta variants similarly induced this phenomenon. In a Calu-3 implanted mouse xenograft model, parental SARSCoV-2 and Delta variant induced lipocalin-2 expression and secretion. Additionally, the iron concentration increased in the Calu-3 tumor tissues and decreased in the serum due to infection. In conclusion, SARS-CoV-2 infection induces the production and secretion of lipocalin-2, potentially resulting in a decrease in iron concentration in serum. Because the concentration of iron ions in the blood is associated with anemia, this phenomenon could contribute to developing anemia in COVID-19 patients.

Theoretical Study of the Structures and Binding Energies of Ca+-(CO)n and Ca+-(CO2)n (n=1,2) (Ca+-(CO)n과 Ca+-(CO2)n (n=1,2)의 구조와 결합에너지에 대한 이론 연구)

  • Park, Gil-Soon;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • The optimized structures and vibrational frequencies for $Ca^+-(CO)_n$ and $Ca^+-(CO_2)_n$ (n=1,2) complexes were calculated with MP2 and B3LYP methods employing 6-311++G(2d,p) basis sets. Also the binding energies were investigated for all complexes to compare the stabilities. For $Ca^+-(CO)_n$ C-bonded complexes are more stable than O-bonded complexes. Two stable conformations, linear and $C_{2v}$ form, are possible for $Ca^+-(CO)_2$ complexes and the $C_{2v}$ form is more stable than the linear form. $Ca^+-(CO_2)_2$ also has two possible conformations and linear form has slightly lower energy than $C_{2v}$ form.

Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes (Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2011
  • The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.

Molecular detection of bat coronaviruses in three bat species in Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Nurjanah, Diana;Nuradji, Harimurti;Maryanto, Ibnu;Exploitasia, Indra;Indriani, Risa
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.70.1-70.12
    • /
    • 2021
  • Bats are an important reservoir of several zoonotic diseases. However, the circulation of bat coronaviruses (BatCoV) in live animal markets in Indonesia has not been reported. Genetic characterization of BatCoV was performed by sequencing partial RdRp genes. Real-time polymerase chain reaction based on nucleocapsid protein (N) gene and Enzyme-linked immunosorbent assay against the N protein were conducted to detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and antibody, respectively. We identified the presence of BatCoV on Cynopterus brachyotis, Macroglossus minimus, and Rousettus amplexicaudatus. The results showed that the BatCoV included in this study are from an unclassified coronavirus group. Notably, SARS-CoV-2 viral RNA and antibodies were not detected in the sampled bats.

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin;Oh, Ji Eun
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.392-400
    • /
    • 2021
  • It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis

  • Yeon-Woo Kang;Subin Park;Kun-Joo Lee;Dain Moon;Young-Min Kim;Seung-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.1.1-1.16
    • /
    • 2021
  • The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a significant health concern worldwide. Undoubtedly, a better understanding of the innate and adaptive immune responses against SARS-CoV-2 and its relationship with the coronavirus disease 2019 (COVID-19) pathogenesis will be the sole basis for developing and applying therapeutics. This review will summarize the published results that relate to innate immune responses against infections with human coronaviruses including SARS-CoV-1 and SARS-CoV-2 in both humans and animal models. The topics encompass the innate immune sensing of the virus to the dysregulation of various innate immune cells during infection and disease progression.

Electrochemical Properties of LiCoO2 Prepared by Mechanochemical Process (Mechanochemical Process로 제조된 LiCoO2의 전기화학적 특성)

  • Cho, Byung-Won;Lee, Joong Kee;Lee, Jae-Ryong;Kim, Su-Jin;Lee, Kwan-Young;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Discharge capacity of $LiCoO_2$ in preparation by mechanochemical process decreased remarkably over 4.3V. However, Zr coating of $LiCoO_2$ showed very stable electrochemical properties up to 4.5V. Zr coating of $LiCoO_2$ in this experiment showed the discharge capacity of 197 mAh/g at 3.0-4.5V, and it maintained 96% of the initial discharge capacity after 50 cycle of charge/discharge.

Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis

  • Kim, Ju;Yang, Ye Lin;Jeong, Yongsu;Jang, Yong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.427-438
    • /
    • 2020
  • Middle East respiratory syndrome coronavirus (MERS-CoV) infects the lower respiratory airway of humans, leading to severe acute respiratory failure. Unlike human dipeptidyl peptidase 4 (hDPP4), a receptor for MERS-CoV, mouse DPP4 (mDPP4) failed to support MERS-CoV infection. Consequently, diverse transgenic mouse models expressing hDPP4 have been developed using diverse methods, although some models show no mortality and/or only transient and mild-to-moderate clinical signs following MERS-CoV infection. Additionally, overexpressed hDPP4 is associated with neurological complications and breeding difficulties in some transgenic mice, resulting in impeding further studies. Here, we generated stable hDPP4-transgenic mice that were sufficiently susceptible to MERS-CoV infection. The transgenic mice showed weight loss, decreased pulmonary function, and increased mortality with minimal perturbation of overexpressed hDPP4 after MERS-CoV infection. In addition, we observed histopathological signs indicative of progressive pulmonary fibrosis, including thickened alveolar septa, infiltration of inflammatory monocytes, and macrophage polarization as well as elevated expression of profibrotic molecules and acute inflammatory response in the lung of MERS-CoV-infected hDPP4-transgenic mice. Collectively, we suggest that this hDPP4-transgenic mouse is useful in understanding the pathogenesis of MERS-CoV infection and for antiviral research and vaccine development against the virus.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.