Ca⁺-(CO)_n과 Ca⁺-(CO₂)_n (n=1,2)의 구조와 결합에너지에 대한 이론 연구

박길순 · 성은모*

충북대학교 화학교육과 (2009, 5, 7 접수)

Theoretical Study of the Structures and Binding Energies of Ca⁺-(CO)_n and Ca⁺-(CO₂)_n (n=1,2)

Gil-Soon Park and Eun-Mo Sung*

Department of Chemical Education, Chungbuk National University, Cheongju 361-763, Korea (Received May 7, 2009)

요 약. Ca^{+} - $(CO)_n$,과 Ca^{+} - $(CO_2)_n$ (n=1,2) complex에 대한 구조와 결합 에너지를 MP2/6-311++G(2d,p) 방법과 B3LYP/6-311++G(2d,p) 방법에 의해 계산하였고 vibrational frequencies도 계산하였다. Ca^{-} - $(CO)_n$ 의 경우 C-bonded complex와 O-bonded complex가 다 가능함을 보였고, Ca^{-} - $(CO)_2$ 에서는 선형과 C_2 , 형태가나타남을 볼 수 있었으며 더 안정한 형태는 C_2 , 구조로 밝혀졌다. Ca^{+} - $(CO)_2$ 에서도 선형과 C_2 , 형태를 볼 수 있는데 이 경우는 선형이 근소한 에너지 차이로 더 안정한 것으로 나타났다.

주제어: Ca⁻-(CO)₀ complex, Ca⁺-(CO₂)_n complex, Ca⁻-(CO)₀ 결합에너지, Ca⁻-(CO₂)_n 결합에너지

ABSTRACT. The optimized structures and vibrational frequencies for Ca^+ - $(CO)_n$ and Ca^- - $(CO)_n$ (n=1,2) complexes were calculated with MP2 and B3LYP methods employing 6-311++G(2d,p) basis sets. Also the binding energies were investigated for all complexes to compare the stabilities. For Ca^- - $(CO)_n$ C-bonded complexes are more stable than O-bonded complexes. Two stable conformations, linear and C_{2v} form, are possible for Ca^+ - $(CO)_2$ complexes and the C_{2v} form is more stable than the linear form. Ca^- - $(CO)_2$ also has two possible conformations and linear form has slightly lower energy than C_{2v} form.

Keywords: Ca⁺ complex with CO and CO₂, Ca⁺ -(CO)_n binding energy, Ca⁻ -(CO₂)_n binding energy

서 론

금속 칼슘은 우주 공간에서 상류 대기층으로 매일 많은 량이 유입되고 있으며 이 용융상태의 칼슘은 증발하여 이중 일부분이 대기중의 다른 분자들과 충돌에 의해 이온화된다.¹

Ca⁺는 쾅이온화반응에 의해 생성되기도 하고 NO⁻나 O₂⁺와의 charge transfer에 의해 생성되기 도 한다.²

$$Ca + hy \rightarrow Ca^{-} + e^{-}$$

 $Ca + NO^{-} \rightarrow Ca^{+} + NO$
 $Ca + O_{2}^{-} \rightarrow Ca^{-} + O_{2}$

Ca⁻는 다른 금속과 달리 lidar (laser radar)로 관찰되며 금속 Ca보다 더 높은 고도에 존재한다.³ 또한 Ca⁺/Ca 의 비율이 운석으로 떨어지는 어떤 금속보다 큰 것으로 나타나있으나 그 이유는 확실히 밝혀지지 않았다. 이 Ca⁺는 전자와 다시 결합하여 금속상태가 되기도 하지만 이 반응은 별로 효율적이지 아닌 것으로 밝혀졌고,⁴ 이보다는 다른 분자들과의 결합으로 안정한 Ca⁻-X complex를 형성하는 것으로 나타났다.⁵ 결합하는 분자들에는 O₂, N₂, H₂O, O₃, CO₂, CO 등이 있으며 때에따라서는 두 번째 ligand와 X-Ca⁻-Y complex를 형성하기도 한다.⁶

이들 ligand들과 금속 complex에 대한 연구는

대부분 Li, Na, K등 1족 금속과의 complex에 대 한 연구가 많이 진행되었고 Mg에 대한 연구가 일부 알려져 있다. Ikuta'에 의한 Li , Na , K 와 CO complex 연구에서는 MP3 방법으로 4-31G, 6-31G* basis set을 사용하여 구조와 결합에너지 를 계산하였다. 이 연구에서 이미 M*-CO (M*= Li^{*}, Na^{*}, K^{*}) 와 M^{*}-OC의 두 구조가 근소한 에너 지차이로 안정한 구조임을 밝혔다. Jordan⁸은 Li 와 Na 금속의 CO₂ complex에 대한 연구에서 HF/ 6-31G* 방법에 의해 여러 다른 구조의 상대적 안 정도를 구하였다. Li-CO₂ Na-CO₂는 직선형이 아 닌 Cs구조를 보이고 Li2-CO2, Na2-CO2는 C2v구조 를 갖는다고 보고하였다. 그 후 Kasai 등⁹은 LiTCO₂T, Na[†]CO₂T의 ESR 연구에서 LiTCO₂T의 경 우는 C, 형태와 evelic C_{2v} 형태 모두 확인할 수 있 었고 NaTCO2"의 경우 evelic C2v만이 확인되었다. 고 보고하였다.

Mg와 CO₂의 반응 메카니즘에 대한 이론 연구 에서 Mebel 등¹⁰은 Mg-CO₂의 여러 구조 중에서 가장 낮은 에너지를 갖는 구조는 cyclic Cav 형태 와 선형인 형태임을 밝혔다. 이 연구에서 MP2/ 6-31+G(d) 방법이나 OCISD(T)/6-311+G(3df) 방 법에 의해서 계산했을 때 모두 근소한 차이로 evelic C_{2v} 형태가 조금 더 안정한 구조로 나타났 다. 이들보다 에너지는 높지만 또 하나의 가능한 형태로 Czv 구조의 Mg(OCO)도 보고되었다. Armentrout 등¹¹에 의한 collision-induced dissociation (CID) 반응과 이론 연구에 의하면 Mg⁺-CO₂는 선형, Mg⁻-(CO₂)₂는 굽은 구조의 C₂v 형태를 갖는다고 보고 하였다. 또한 MgT-CO의 경우는 선형 구조로 결 합 에너지가 Mg⁻-CO₂ 보다 작음을 보였다. 이들 이 사용한 계산 방법은 MP2(full)/6-31G*와 MP2 (full)/6-311+G(2d,2p)를 사용하여 실행하였다.

Ca를 포함한 3주기 원소에 대한 CO₂ complex에 대한 연구는 최근까지 보고된 내용이 많지 않다. Jeung¹²은 3주기 원소(Ca-Mn, Cu, Zn)와 CO₂ complex에 대한 이론 연구에서 RHF, CI(configuration interaction)방법에 의해 M-CO₂의 안정한 구조, 전자 분포 등을 계산하였다. 이 계산에 의하면 Ca-CO₂의 경우 cyclic 형태가 안정하고 CO₂의 O의 Ca가 결합한 형태도 안정함을 보였다. Magnusson¹³은 Li⁻, Na⁺, K⁻, Mg²⁻, Ca²⁺와 ligands H₂O.

NH₃, H₂S, PH₃와의 complex에서 결합 에너지를 계산하여 결합의 안정도를 알아보았다. Ca²⁺의 경우 Mg²⁻에 비해 평균 50% 정도의 결합 세기를 갖는 것으로 나타났다.

Ca^T와 비활성기체 (Ar, Kr, Xe)와의 complex에 대해 Duncan[□] 등은 광분해 스펙트럼을 분석하여 이들 complex의 해리 에너지를 구하였다. 여기 서도 Ca^T의 해리 에너지가 Mg^T보다 훨씬 낮음을 보였다. 또한 이 Duncan 등¹⁵은 Ca⁻-CO₂의 광분해 스펙트럼을 통해 전자 스펙트럼을 분석하여 complex의 특성을 알아 보았다. 그 결과 Ca⁻-CO₂ complex는 선형일 것으로 예측하였고 분광학적 상수 $v_{00} = 22099.1 \text{ cm}^{-1}$, $\omega_e = 258.9 \text{ cm}^{-1}$, $\omega_e x_e =$ 4.23 cm⁻¹ 등을 구하였다. Mebel¹⁶ 등이 분석한 Ca 원자와 CO2의 반응 메카니줌은 가능한 Ca complex들을 보여주고 그들의 상대적 안정도를 나 타내었다. CCSD(T)/6-311+G(3df) 방법과 MP2/ 6-31G(d) 방법으로 계산한 결과 evelic Ca-OCO complex가 가장 안정한 중간 생성물로 상대적인 에너지는 Ca +CO2보다 5.1 kcal/mol 더 높게 나 타났다.

최근 Plane⁶ 등이 Ca⁻에 대해 Ca⁺-X, Y-Ca⁺-X (X, Y = H₂O, CO₂, N₂, O₂, O) complex들의 이론 연구 결과를 발표하였다. MP2/6-311+G(2d,p) 또는 B3LYP 방법으로 계산한 결과 Ca⁻-CO₂의 경우 선형으로 결합하고 결합에너지는 54 kJ/mol 이며 Ca⁺(CO₂)₂의 경우 역시 두 CO₂ 분자가 선형으로 결합하고 결합에너지는 Ca⁺-CO₂ 의 두배 정도라고 보고하였다. 또한 이들 Ca⁻ 이온과 O₃, O₂, N₂, CO₂, H₂O 분자들과 반응 속도론적 연구에서 Ca⁻-CO₂에 대하여 같은 결과를 발표하였다. ^{17,18}

이 연구에서는 Ca⁺(CO)_n, Ca⁻(CO₂)_n (n=1~2)에 대하여 MP2, 그리고 B3LYP 방법으로 안정한 구조를 알아보고 이들 구조의 결합에너지, vibrational frequency 등 분자들의 특성에 대해 연구하고자 한다.

계산 및 결과

모든 계산은 Gaussian 03 program²⁰을 이용하여 MP2/6-311++G(2d,p) 방법과 B3LYP/6-311++G

(2d, p) 방법으로 계산하였다.

Ca⁺-CO와 Ca⁺-OC

Ca⁺-CO에 대해 안정한 구조를 알아보기 위하여 구조의 최적화를 시킨 결과 선형인 형태로 안정하게 나타났다. Ca⁺-OC에 대해서도 최적화 시킨 결과 Ca⁻-CO 보다는 약간 높은 에너지를 갖지만 낮은 에너지 상태로 안정하게 존재함을 볼수 있었다. 이 계산 결과를 *Table* 1에 나타내었다. Ca⁺-CO 보다 Ca⁻-OC가 더 안정한 형태일 것으로 예상하였으나 계산 결과는 그 반대로 Ca⁻-CO가 더 낮은 에너지를 보였다. Hadjiivanov 등¹⁹에 의한 CaNaY zeolite 표면에 CO와 N₂의 흡착 반응에서도 Ca²⁻-CO와 Ca²⁻-OC의 두 가지 complex들에 의한 IR 흡수 따가 나타났음이 보고되었다.

이 두 complex들의 vibrational frequency를 계 산하여 그 결과도 *Table* 1에 나타내었다.

$Ca^+-(CO)_2$ $P = Ca^+-(OC)_2$

Ca⁻-(CO)₂ 에 대하여 구조의 최적화를 시킨 결과 근소한 에너지 차이를 갖는 두 가지 형태가존재함을 알 수 있었다. 그 첫 번째 구조가 선형구조로 C-Ca⁺-C 가 180.0°를 갖는 구조이다. 그런데 이보다 더 안정한 형태가 C-Ca⁻-C 각이 약70.5° 되는 굽은 구조로 MP2 계산에서 선형보다약 105.1 kJ/mol이나 더 낮게 나타났다. B3LYP계산에서는 약20.2 kJ/mol 정도 차이가 난다. Ca⁺-(OC)₂의 경우도 구조를 최적화 시켜 가장 안정한형태가 선형과 굽은 구조로 나타났다. 이 경우도 O-Ca⁻-O 각이 66.9°인 굽은 구조가 더 안정하나선형과의 에너지 차이가 별로 크지 않다.

이들 complex들의 구조와 에너지를 *Table 2와 Table 3*에 나타내었다. 또한 Vibrational frequencies 도 계산하여 *Table 2*, 3에 나타내었다. Ca⁻-(CO)₂와 Ca⁻-(OC)₂의 구조를 위의 Ca⁺-CO와 Ca⁺-OC와 함께 *Fig.* 1에 나타내었다.

Table 1. The optimized structure and vibrational frequency of	CaT-C	O and Ca [†] -C	C_a
---	-------	--------------------------	-------

	Ca⁺	-CO		Ca¯-OC		
	MP2/ 6-311++G(2d,P)	B3LYP/ 6-311++G(2d,P)		MP2/ 6-311++G(2d,P)	B3LYP/ 6-311++G(2d,P)	
Ca ⁺ C	2.906	2.817	Ca⁺O	2.746	2.548	
CO	1.131	1.116	OC	1.145	1.137	
Ca ⁺ CO	180.0	180.0	Ca⁺OC	180.0	180.0	
energy(a,u)	-789.86093	-790.71450		-789.85342	-790.71103	
vibrational	111.2(π)	111.2(π)		109.5(π)	109.5(π)	
frequency(cm ⁻¹)	$143.1(\sigma)$	2293.6(σ)		152.8(σ)	2118.7(σ)	

^aBond distances are in angstroms, and bond angles in degrees.

Table 2. The optimized structures and vibrational frequencies of Ca⁻-(CO)₂^a

	00	OC-Ca ⁻ -CO(linear) OC-Ca ⁻ -		OC-CaT-CO(C:	CO(C _{2v})	
	MP2/ 6-311++G(2	(d , p) 6	B3LYP/ -311++G(2d,p)	MP2/ 6-311++G(B3LYP/ 11++G(2d,p)
CaTC(CaTC1)	2.439		2.458	2.850		2.438
CO(C'O')	1.145		1.132	1.133		1.130
CCa ⁺ C	180.0		180.0	70.5		80.4
energy(a.u)	-902.9347	70	-904.08146	-902.974	76 -	904.08915
vibrational	25.4(a)	50.8(a)	203.2(a)	54.5(a')	208.4(a")	208.8(a")
	208.3(a)	248.8(a)	333.5(a)	242.7(a1)	249.1(a')	274.0(a')
frequencies(cm ⁻¹)	2041.8(a)			299.1(a')	2087.6(a1)	2134.0(a1)

^aBond distances are in angstroms and bond angles in degrees.

	CC	O-Ca ⁺ -OC(lin	near)		CO-Ca ⁺ -OC(C ₃	(v)
	MP2/ 6-311++G(2	(d,p) 6-	B3LYP/ 311++G(2d,p)	MP2/ 6-311++G(B3LYP/ 11++G(2d,p)
CaTO(CaTO1)	2.719		2.535	2.784		2.615
$OC(O^*C^*)$	1.145		1.136	1.145		1.136
OCa ⁺ O	180.0		180.0	66.9		73.8
energy(a.u)	-902.9584	18	-904.07335	-902.959	925 -	904.06918
	$36.7(\pi_u)$	$36.7(\pi_{\rm u})$	$111.8(\pi_g)$	48.0(a ₁)	$101.9(b_1)$	103.4(b ₂)
vibrational	$111.8(\pi_{\rm g})$	$123.5(\pi_{v})$	$123.5(\pi_u)$	$105.8(a_2)$	$116.7(a_1)$	$117.8(b_2)$
frequencies(cm ⁻¹)	$126.6(\sigma_g)$	$192.5(\sigma_{\rm u})$	$2124.6(\sigma_u)$	$146.3(a_1)$	$2120.6(b_2)$	$2126.2(a_1)$
	$2128.8(\sigma_g)$					

^aBond distances are in angstroms and bond angles in degrees.

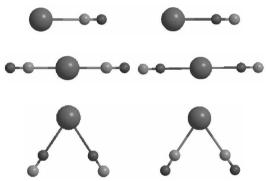


Fig. 1. The optimized structures of Ca⁻-(CO) and Ca⁻-(CO)_b.

MP2 계산으로는 굽은 구조에서 앞에서와 같이 Ca⁻-(CO)₂가 Ca⁻-(OC)₂보다 에너지가 낮음을 볼 수 있으나 선형의 경우는 Ca⁻-(CO)₂가 Ca⁻-

(OC)₂보다 더 높게 나타났다. 그러나 B3LYP 계 산으로는 역시 Ca⁺-(CO)₂가 Ca⁺-(OC)₂보다 더 낮 아 계산 방법에 따라 차이가 있음을 알 수 있다.

Ca⁺-CO₂

Ca⁻-CO₂의 안정한 구조를 찾기 위해 우선 선형 구조로 최적화 시켰다. Ca⁺-OCO 형태로 최적화 시킨 결과 안정한 에너지를 갖는 선형 complex가 존재함을 볼 수 있었다. 이 구조와 에너지를 Table 4에 나타내었다. 앞의 연구 $^{10.16}$ 에 의하면 Mg-CO₂의 경우 이 선형 구조 외에 cyclic, C_{1v} 구조가 안정하게 존재한다고 보고하였고 Ca-CO₂의 경우도 역시 cyclic, C_{1v} 구조가 안정하다고 하였다. 따라서 Ca⁻-CO₂도 cyclic형태로 최적화 시켜본 결과 안정한 에너지 상태에 도달하는 것을

Table 4. The optimized structures and vibrational frequencies of Ca⁻-CO₂^a

	C	a¯-OCO(lii	near)		Ca ⁺ -OC(O(cyclic)
-	MP2/ 6-311++G(2	2d,p) 6	B3LYP/ -311++G(2d,p)	-	MP2/ 6-311++G(2d,p)	B3LYP/ 6-311++G(2d,p)
Ca [†] O	2.444		2.373	Ca ⁻ O	2.213	2.191
OC	1.186		1.179	Ca ^T O ^T	2.213	2.191
CO'	1.153		1.142	OC(O'C)	1.259	1.252
Ca [†] OC	180.0		180.0	OCa [†] O′	61.1	61.3
OCO	180.0		180.0	OCO,	126.6	1 2 6.1
energies(a.u)	-865,0113	38	-866.02160		-864.98538	-866.01203
71 1	62.6(π)	62.6(π)	197.9(σ)		309.3(a')	342.6(a")
vibrational frequency (cm ⁻¹)	$643.6(\pi)$	$643.6(\pi)$	1366.7(σ)		417.1(a')	788.6(a1)
neducticy (cm.)	2427.3(σ)				1317.6(a')	1539.1(a')

^aBond distances are in angstroms and bond angles in degrees.

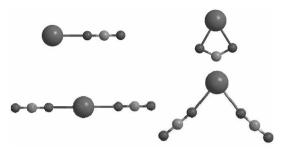


Fig. 2. The optimized structures of Ca^+ - (CO_2) and Ca^- - $(CO_2)_2$.

알 수 있었다. 이 최적화 시킨 결과를 *Table* 4에 같이 나타내었다. Vibrational frequencies도 *Table* 4에 나타내었다.

에너지는 선형인 Ca^T-OCO보다 약 68 kJ/mol 정도 높지만 비교적 안정한 형태로 최적화 되었다. 또한 B3LYP 계산에서도 이 eyelic 형태의 안정한 에너지 상태로 최적화 되었고 선형보다 약25 kJ/mol 정도 에너지가 높았다. 이 두 가지 형태의 Ca^T-CO₂를 Fig. 2에 나타내었다.

Plane 등 에 의한 최근 연구에서는 Ca⁺-CO₂의 구조를 선형이 제일 안정하다고 하였고 CO₂의 O가 Ca⁻에 접근하거나 두 O가 동시에 접근하는 것은 불안정 할 것으로 보아 전혀 고려하지 않았다. 그러나 Mebel 등 ¹⁰에 의한 M₂-CO₂의 연구에

서는 cyclic 구조가 선형인 형태보다 에너지가 조금 더 낮다고 보고하였다.

Ca^+ - $(CO_2)_2$

Ca⁻-(CO₂)₂의 경우는 앞의 연구⁶에서처럼 선형이 안정할 것으로 보여 OCO-Ca⁻-OCO 형태로 최적화 시켰다. 이 선형은 안정한 에너지 상태로 최적화 되었고 이 결과를 *Table* 5에 나타내었다. Ca⁻-(CO)₂처럼 이 complex도 굽은 C_{2v} 형태로 존재할 가능성이 있어 그러한 안정한 구조를 찾기위해 최적화 시켰다. 실제로 이 C_{2v} 구조는 안정하게 나타났고 선형 구조와 에너지 차이가 크지 않았다. 약 2.4 kJ/mol 정도 선형보다 높게 나타났다.

Mg⁺-(CO₂)₂의 경우 Armentrout 등¹¹는 굽은 C₂, 구조를 가장 낮은 에너지를 갖는 바닥상태로 보고하였고 선형 구조는 고려하지 않았다. 반면에 Plane⁶ 등에 의한 연구에서는 Ca⁻-(CO₂)₂가 선형으로 안정하게 존재한다고 하였으며 다른 구조의 가능성은 언급하지 않았다. 본 계산에서는 선형 구조와 굽은 C₂, 구조가 다 안정한 것으로 나타났고 그 중에서 선형이 더 안정한 형태로 나타냈다. 이 Ca⁺-(CO₂)₂도 Ca⁻-(CO₂)와 함께 Fig. 2에 나타내었다. 그러나 B3LYP 계산으로는 이 굽은

Table 5. The optimized structures and vibrational frequencies of Ca⁻¹(CO₂)₂^a

)CO-Ca ^T -OCO	(linear)	OCO-Ca ⁺ -OCO(C _{2v})
	MP2/ 6-311++G(2	2d,p)	B3LYP/ 6-311++G(2d,p)	MP2/ 6-311++G(2d,p)
Ca ⁻ O(Ca ⁺ O')	2.436		2.390	2.493
OC(O'C')	1.184		1.177	1.184
CO'(C'O")	1.154		1.143	1.155
OCa [†] O′	180.0		180.0	78.0
OCO	180.0		180.0	180.0
Ca ^T OC	180.0		180.0	168.9
energies(a.u)	-1053,272	163	-1054.69223	-1053.27172
	21.7(π _u)	$21.7(\pi_{\rm u})$	55.5(π _g)	
	$55.5(\pi_g)$	$75.1(\pi_u)$	$75.1(\pi_u)$	
vibrational	$136.3(\sigma_{\rm g})$	$232.3(\sigma_u)$	$641.8(\pi_{\rm g})$	
frequencies(cm ⁻¹)	$641.8(\pi_{\rm g})$	$642.1(\pi_{\rm u})$	$642.1(\pi_{\rm u})$	
- ,	$1369.9(\sigma_u)$	$1371.0(\sigma_g)$	$2422.0(\sigma_u)$	
	$2430.8(\sigma_{\!g})$			

^aBond distances are in angstroms, and bond angles in degrees.

Table 6. The binding energies of $Ca^{\dagger}(CO)_n$, $Ca^{\dagger}(CO_2)_n$ (n=1,2)

		MP2/ 6-311++G(2d,p)	B3LYP/ 6-311++G(2d,p)	Ref.6
Ca ⁺ (CO)		32.6	34.4	
$Ca^{\dagger}(OC)$		12.9	24.0	
$Ca^{\dagger}(CO)_2$	linear	-38.1	72.4	
	C_{2v}	67.1	92.5	
$Ca^{\dagger}(OC)_2$	linear	24.3	51.1	
	C_{2v}	26.3	40.1	
$Ca^{\dagger}(CO_2)$	linear	46.7	55.3	54
	eyelie	-21.6	30.2	
$Ca^{\dagger}(CO_2)_2$	linear	87.2	107.8	108.6
	C_{2v}	84.8		

^aBinding energies are in kJ/mol.

형태로 최적화하는 데 실패하였다. 에너지 차이가 크지 않아서인지 굽은 구조가 안정한 형태로 나타나지 않았다.

굽은 구조의 경우 Ca[†]-OCO 결합이 직선으로 되어있지 않고 약 169° 정도로 휘는 것을 볼 수 있다.

결합 에너지

위의 모든 complex들의 결합 에너지를 계산하여 그 구조의 안정도를 비교해 보았다. 계산한 결합 에너지를 Table 6에 나타내었다. MP2 계산과 B3LYP 계산에 의한 값들도 비교하였다. Ca⁺-CO의 결합 에너지가 예상대로 Ca⁻-OC의 결합 에너지보다 2배 이상 높았다. Ca⁺-(CO)₂나 Ca⁺-(OC)₂의 결합 에너지는 Ca⁺-CO나 Ca⁻-OC의약 2배가 될 것으로 예측할 수 있는 데, 실제로선형 Ca⁻-(CO)₂의 경우만 제외하고 그렇게 나타 났음을 알 수 있다.

이 선형 Ca⁺-(CO)₂의 경우 예외적으로 결합 에 너지가 음의 값으로 나타났고 안정한 결합 상태 가 아님을 알 수 있다. 그러나 B3LYP 계산으로 는 안정한 결합 에너지를 갖는다.

또 다른 음의 결합 에너지를 보이는 경우가 cyclic Ca⁻-CO₂로 이 역시 B3LYP 계산으로는 정 상적인 결합 에너지를 보인다. Cyclic Ca⁺-CO₂의 경우 그리 안정한 형태가 아님이 앞의 Mg-CO₂ 연구에서도 밝혀졌다.¹⁰ Plane 등⁶에 의한 Ca⁻-CO₂와 Ca⁻-(CO₂) 결합에너지가 본 연구의 B3LYP

결합에너지와 잘 일치함을 볼 수 있고 *Table* 6에 같이 나타내었다.

결 론

Ca⁻의 CO와 CO₂ complex 구조에 대한 계산 결 과, 여러 가지 complex 형태가 나타났고 그 결합 상태가 다양함을 알 수 있었다. 특히 Ca⁺-CO complex의 경우 CaT-CO와 CaT-OC의 결합이 다 르게 나타남을 볼 수 있었다. 결합 세기는 Ca[†]-CO가 훨씬 크지만 결합 길이는 Ca⁺-C의 2.906 A 에 비하여 CaT-O는 2.746 A으로 훨씬 짧게 나타 나 결합 길이가 결합 세기에 비례하지 않는 것을 볼 수 있다. Hadiiivanov 등의 FTIR 연구에 의하 면 Ca²⁺-CO와 Ca²⁺-OC가 상온에서 평형 상태로 존재하나 85 K 정도의 낮은 온도에서는Ca²⁺-OC 는 발견되지 않는다고 보고하였다. 이 결과는 결 합 세기로 봤을 때 Ca complex 결과와 일치한다 고 볼 수 있다. Ca⁺-(CO)₂와 Ca⁻-(OC)₂ complex의 경우는 선형과 비선형의 두 가지 구조를 가지면 서 더 다양한 형태를 보인다. 결합 에너지로 봐 서는 역시 Ca[†]-(CO)₂가 Ca[†]-(OC)₂보다 더 안정함 을 볼 수 있으나 선형의 경우 Ca -(CO) 가 극도로 불안정한 상태가 된다는 것이 예외로 보인다. 두 complex 모두 Cw의 굽은 구조를 선호하고 Ca-(CO)2의 경우는 대단히 큰 결합 에너지를 갖는 안정한 complex 임을 보인다. 흥미로운 사실은 가장 큰 결합 에너지를 갖는 Cv 형태의 CaT-(CO): 가 가장 긴 Ca⁻-C 결합 길이를 갖는다는 점이다.

선형 Ca⁺-CO₂ complex의 경우는 결합 길이나 결합 세기에서 앞의 연구^{0.17}와 별로 다르지 않은 결과를 보였다. Cyclic 형태에서는 선형보다 불 안정하나 그래도 최적화된 형태를 보였다. Mebel 등의 Mg-CO₂ 에서도 이 cyclic 형태를 선형 다음 으로 안정한 형태로 예측하였고, 같은 group의 Ca-CO₂ 연구에서는 cyclic CaOCO가 Ca+CO₂ 반 응 경로에서 가장 중요한 중간체로서 비교적 안 정한 에너지 형태인 것으로 보고하였다. 이 cyclic 형태에서 Ca⁻-O 결합 길이가 다른 complex에 비 해 대단히 짧게 나타났다.

Ca⁺-(CO₂)₂ complex는 선형과 굽은 C_{2v} 구조가 거의 비슷하게 안정한 형태인 것으로 나타났다. 결합 질이도 별 차이가 없고 에너지도 거의 같 다. Armentrout¹¹ 등에 의한 연구에서 Mg⁺-CO₂의 경우는 선형으로 Mg⁺-C 결합의 해리 에너지가 54 kJ/mol이고 Mg⁺-(CO₂)₂는 C_{2v} 형태로 Mg⁻-C 결합의 해리 에너지가 40.5 kJ/mol 임을 밝혔다. 이 값들은 이 연구의 계산 값과 비교적 잘 일치 함을 알 수 있다.

이 논문은 2007년도 충북대학교 학술연구 지 원사업의 연구비 지원에 의하여 연구되었음

인용문헌

- 1. Kane, T. G.; Gardner, C. S. Science 1993, 259, 1297.
- Gerding, M.; Alpers, M.; Zahn, U; Rollason, R. J.; Plane, J. M. C. J. Geophys. Res. 2000, 105, 2713.
- Gerding, M.; Alpers, M.; Höffner J.; Zahn, U.; Ann. Geophys. 2001, 19, 47.
- Bautista, M. A.; Romano, P.: Pradhan, A. K. Astrophys. J. Suppl. Ser. 1998, 118, 259.
- Feil, S.; Koyangi, G. K.; Viggiano, A. A. and Bohone, D. K. J. Phys. Chem. A. 2007, 111, 13397.
- Plowright, R. J.; Wright, T. G.; Plane, J. M. C. J. Phys. Chem. A, 2008, 112, 6550.
- IKuta, S. Chem. Phys. lett 1984, 109, 550.

- 8. Jordan, K. D. J. Phys. Chem. 1984, 88, 2459.
- Köppe, R.; Kasai, P. H. J. Phys. Chem. 1994, 98, 11331.
- Hwang, D. Y.; Mebel, A. M. J. Phys. Chem. 2000, 104, 7646.
- Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P. B. J. Phys. Chem. A, 2000, 104, 692
- 12. Jeung, G. H. Chem. Phys. Lett. 1995, 232, 319.
- 13. Magnusson, E.; J. Phys. Chem. 1994, 98, 12558.
- Pullins, S. H.; Scurlock, C. T.; Roddie, J. E.; Duncan, M. A. J. Chem. Phys. 1996, 104, 7518.
- Scurlock, C. T.: Pullins, S. H.: Duncan, M. A. J. Chem. Phys. 1996, 105, 3579.
- Hwang, D. Y.; Mebel, A. M. Chem. Phys. Lett. 2000, 331, 526.
- Broadley, S.; Vondrak, T.; Plane, J. M. C. Phys. Chem. Chem. Phys. 2007, 9, 4357.
- Broadley, S. L.; Vondrak, T.; Plane, J. M. C.; Wright, T. G. *Phys. Chem. Chem. Phys.* **2008**, *10*, 5287.
- Hadjiivanov, K.; Knözinger, H.; Ivanova, E.; Dimitrov, L. Phys. Chem. Chem. Phys., 2001, 3, 2531.
- 20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.: Vreven, T.: Kudin, K. N.; Burant, J. C.; Millam, J. M.: Lyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G., Rega, N.: Petersson, G. A., Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.: Ishida, M.: Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.: Jaramillo, J.: Gomperts, R.: Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.: Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.: Chen, W.: Wong, M. W.; Gonzalez, C.: Pople, J. A.; Gaussian 03, revision B.03; Gaussian, Inc.: Pittsburgh PA, 2003.