• 제목/요약/키워드: CoPt

검색결과 858건 처리시간 0.062초

CoFe/Cu/CoFe/PtMn 다층박막의 자기저항 곡선을 이용한 자기 등방성 특성 분석 (Analysis of Magnetic Isotropy Property using Magnetoresistance Curve of CoFe/Cu/CoFe/PtMn Multilayer Film)

  • 최종구;김수희;최상헌;이상석;이장로
    • 한국자기학회지
    • /
    • 제27권4호
    • /
    • pp.123-128
    • /
    • 2017
  • PtMn계 스핀밸브(Spin Valve, SV) 다층박막의 하부층 구조를 달리하여 제작된 시료를 열처리 후 측정한 자기저항(magnetoresistance, MR) 곡선과 자기이력 곡선(MH loop)으로부터 얻은 등방성의 자기적 특성을 조사하였다. PtMn층이 없는 스핀밸브 구조의 Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/Ta(4 nm) 다층박막으로 측정한 MR 곡선에서 얻은 교환결합력($H_{ex}$), 보자력($H_c$), 자기저항비(MR(%))는 각각 0 Oe, 약 25 Oe, 3.3 %이었다. Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/Ta(4 nm) 다층박막으로 측정한 MR 곡선에서 반강자성체인 PtMn 박막으로 나타낸 효과로 하여금 나비 날개 형태로 얻은 $H_{ex}$, $H_c$, MR(%)는 각각 2 Oe, 316 Oe, 4.4 %이었다. 반강자성체인 PtMn층이 중간층으로 삽입된 이중 GMR-SV 다층박막으로 측정한 MR 곡선과 MH loop에서 얻은 $H_c$는 각각 37.5 Oe과 386 Oe이었으며, MR(%)는 각각 3.5 %와 6.5 %로 2개의 히스테리시스에서 사각비가 뚜렷하게 대칭적으로 나눠져 자기적 특성을 나타내었다. PtMn계 CoFe 스핀밸브 박막의 매우 작은 $H_{ex}$ 값과 미미한 형상이방성을 갖는 효과로 하여금 비등방성을 갖는 자기적 특성을 잃게 되었다. 이러한 결과는 PtMn 박막의 하부층과 상부층에 있는 SV 다층박막에서 각 강자성체의 자화 스핀배열로 일어나는 효과를 나타내었다.

Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

  • Tao, Manlan;Xu, Feng;Li, Yueting;Xu, Quanqing;Chang, Yanbing;Wu, Zaisheng;Yang, Yun-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1968-1972
    • /
    • 2010
  • Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt-Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from $2.35\times10^{-5}$ to $2.39\times10^{-3}$ M with a detection limit of $7.83\times10^{-6}$ M at optimum conditions. This sensor displayed high sensitivity and long-term stability.

RTD용 Pt-Co 합금박막의 열처리 특성 (Annealing Characteristics of Pt-Co Alloy thin Films for RTD Temperature Sensors)

  • 홍석우;서정환;노상수;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1349-1351
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_2O_3$ substrates by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : $4.4 W/cm^2$. Co:6.91W/$cm^2$. working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. These results indicate that Pt-Co alloy thin films have potentiality for the high resolution RTD temperature sensors.

  • PDF

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.

Effect of Support of Two-Dimensional Pt Nanoparticles/Titania on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang-Hoon;Kim, S.M.;Reddy, A.S.;Jin, S.;Ha, H.;Park, Jeong-Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.246-246
    • /
    • 2012
  • Smart catalyst design though novel catalyst preparation methods can improve catalytic activity of transition metals on reducible oxide supports such as titania by enhancement of metal oxide interface effects. In this work, we investigated Pt nanoparticles/titania catalysts under CO oxidation reaction by using novel preparation methods in order to enhance its catalytic activity by optimizing metal oxide interface. Arc plasma deposition (APD) and metal impregnation techniques are employed to achieve Pt metal deposition on titania supports which are prepared by multi-target sputtering and Sol-gel techniques. In order to tailor metal-support interface for catalytic CO oxidation reaction, Pt nanoparticles and thin films are deposited in varying surface coverages on sputtered titania films using APD. To assess the role of oxide support at the interface, APD-Pt is deposited on sputtered and Sol-gel prepared titania films. Lastly, characteristics of APD-Pt process are compared with Pt impregnation technique. Our results show that activity of Pt nanoparticles is improved when supported over Sol-Gel prepared titania than sputtered titania film. It is suggested that this enhanced activity can be partly ascribed to a very rough titania surface with the higher free metal surface area and higher number of sites at the interface between the metal and the support. Also, APD-Pt shows superior catalytic activity under CO oxidation as compared to Pt impregnation on sputtered titania support. XPS results show that bulk oxide is formed on Pt when deposited through impregnation and has higher proportion of oxidized Pt in the form of $Pt^{2+/4+}$ oxidation states than Pt metal. APD-Pt shows, however, mild oxidation with large proportion of active Pt metal. APD-Pt also shows trend of increasing CO oxidation activity with number of shots. The activity continues to increase with surface coverage beyond 100%, thus suggesting a very rough and porous Pt films with higher active surface metal sites due to an increased surface area available for the reactant CO and $O_2$ molecules. The results suggest a novel approach for systematic investigation into metal oxide interface by rational catalysts design which can be extended to other metal-support systems in the future.

  • PDF

NiO Thickness Dependences of Perpendicular Magnetic Anisotropy in the [CoFe/Pt] Multilayers

  • Kim, S.W;Lee, J.Y;Lee, S.S;Hahn, E.J;Hwang, D.G
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.121-124
    • /
    • 2004
  • NiO thickness dependences of perpendicular magnetic anisotropy (PMA) in the $NiO/[CoFe/Pt]_5$ multilayers for exchange biasing and $[CoFe/Pt]_4/Pt/[CoFe/Pt]_4$ for interlayer exchange coupling were investigated. Perpendicular magnetization curve was obtained by out-of-plane extraordinary Hall measurement. Magnetic force microscopy (MFM) has been used for the investigation of magnetic domains on thin films. We confirmed that the interlayer exchange coupling (IEC) as a function of NiO thickness at room temperature existed with a period of two monolayers.

Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구 (Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature)

  • 김성철;김거종;홍성창
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.657-662
    • /
    • 2018
  • 본 연구에서는, $Pt/TiO_2$ 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향을 조사하기 위하여 각기 다른 물리적 특성을 가지는 다양한 $TiO_2$ 지지체를 이용하여 $Pt/TiO_2$ 촉매를 제조한 후 평가하였다. 촉매의 물리화학적 특성을 조사하기 위하여 XPS, CO-chemisorption, BET, CO-TPD 분석을 수행하였다. 그 결과, active particle diameter가 작을수록, metal dispersion, surface area가 클수록 우수한 CO 상온산화 반응을 나타내었다. 이러한 물리적 특성은 active site의 수를 증진시켜 대상물질은 CO의 흡착량의 증가를 야기시켰다. 또한, $O_2$-consumption이 클수록 우수한 산소 전달 능력을 통해 보다 높은 CO 상온산화 반응활성을 나타내었다.

VMn underlayer for CoCrPt Longitudinal Recording Media

  • Oh, S.C;Lee, T.D
    • Journal of Magnetics
    • /
    • 제5권4호
    • /
    • pp.143-146
    • /
    • 2000
  • In this study, the magnetic properties of CoCrPt films (far longditudinal recording) on a novel VMn underlayer were measured and compared with similar films on conventional Cr underlayers. It was found that the VMn film had (200) preferred orientation and the lattice constant was about 0.2967 nm, which is slightly larger than that of the Cr film, 0.2888 m. The grain size of the VMn film was 9.8 nm at 30 m thickness, about 39% smaller than that of a similarly deposited Cr. The CoCrPt/VMn films showed higher coercivity in comparison with the CoCrPt/Cr films. The coercivity increase is attributed to the increased Co (11.0) texture, improved lattice matching between Co (11.0) and VMn (200), and lower stacking fault density. V or Mn must have diffused into the CoCrPt magnetic layer uniformly rather than preferentially along grain boundaries. This reduced Ms at higher substrate temperature.

  • PDF

Pt/Co/Ba/Al2O3에 Fe 첨가가 수소 풍부 NSR 반응성에 미치는 영향 (Effect of Fe Addition on Hydrogen Rich NSR Kinetics over Pt/Co/Ba/Al2O3 Catalyst)

  • 김진걸;전지용;김성수
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.581-587
    • /
    • 2012
  • Thermal aging effect on NSR kinetics was studied over Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. The amount of $NO_x$ uptake over Pt/Co/Fe/Ba/$Al_2O_3$ calcined at $400^{\circ}C$ increased with increasing NSR temperature from $200^{\circ}C$ to $400^{\circ}C$, where amount of $NO_x$ uptake is the highest at $400^{\circ}C$ with mol ratio of $NO_x$/Ba = 0.5. Thereafter, the amount of $NO_x$ uptake at $400^{\circ}C$ decreased with the higher calcination temperature, where Pt/Co/Fe/Ba/$Al_2O_3$ catalyst calcined at $700^{\circ}C$ showed an amount of $NO_x$ uptake with the mol ratio of $NO_x$/Ba=0.062. Result of XRD and NSR showed that Fe addition into Pt/Co/Fe/Ba/$Al_2O_3$ suppressed sintering of Pt crystallites and make $NO_x$ uptake larger, compared to no addition of Fe into Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. From BET result, it was found that the change of specific surface area was relatively small by the thermal aging process. Therefore, it was found that the sintering of Pt crystallites caused the decrease of $NO_x$ uptake during NSR reaction and Fe played a role to suppress the sintering process of Pt crystallites caused by thermal aging.