Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.4.123

Analysis of Magnetic Isotropy Property using Magnetoresistance Curve of CoFe/Cu/CoFe/PtMn Multilayer Film  

Choi, Jong-Gu (Department of Oriental Biomedical Engineering, Sangji University)
Kim, Su-Hee (Department of Oriental Biomedical Engineering, Sangji University)
Choi, Sang-Heon (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Rhee, Jang-Roh (Department of Nanophysics, Sookmyung Women's University)
Abstract
The magnetic isotropy property from the magnetoresistance (MR) curve and magnetization (MH) loop for the PtMn based spin valve (SV) multilayer films fabricated with different the bottom structure after post-annealing treatment was investigated. The exchange biased coupling field ($H_{ex}$), coercivity ($H_c$), and MR ratio of Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/Ta(4 nm) SV multilayer film without antiferromagnetic PtMn layer are 0 Oe, 25 Oe, and 3.3 %, respectively. MR curve for the Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/Ta(4 nm) SV multilayer film showed $H_{ex}=2Oe$, $H_c=316Oe$, and MR (%) = 4.4 % with one butterfly MR curve having by the effect of antiferromagnetic PtMn layer. MR curve for the dualtype Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/CoFe(3 nm)/Cu(2.5 nm)/CoFe(6 nm)/Ta(4 nm) SV multilayer film showed $H_c=37.5Oe$ and 386 Oe, MR = 3.5 % and 6.5 % with two butterfly MR curves and square-like hysteresis MH loops. The anisotropy property in CoFe spin valve-PtMn multilayer is neglected by the effects of a very small value of $H_{ex}$ and a very slightly shape magnetic anisotropy. This result is possible to explain the effect of magnetization configuration spin array of the bottom SV film and the top SV film of PtMn layer.
Keywords
coercivity; CoFe/Cu/CoFe spin valve; PtMn; magnetic hysteresis curve; dual-type multilayer;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 M. D. Cubells-Beltran, C. Reig, J. Madrenas, A. D. Marcellis, J. Santos, S. Cardoso, and P. P. Freitas, Sensors 16, 939 (2016).   DOI
2 S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, San Diego (1991) Chap. 6, pp. 123-176.
3 M. J. Kim, H. J. Kim, and K. Y. Kim, J. Korean Magn. Soc. 11, 72 (2001).
4 S. H. Huang, C. H. Lai, C. C. Chiang, and C. H. Yang, J. Appl. Phys. 99, 08R508 (2006).   DOI
5 J. P. Noieres, S. Jaren, Y. B. Zhang, A, Zeltser, K. Pentek, and V. S. Speriosu, J. Appl. Phys. 87, 3920 (2000).   DOI
6 G. W. Anderson, Y. Huai, and M. Pakala, J. Appl. Phys. 87, 5762 (2000).   DOI
7 M. Saito, N. Hasegawa, F. Koike, H. Seki, and T. Kuriyama, J. Appl. Phys. 85, 4928 (1999).   DOI
8 M. Takiguchi, S. Ishii, E. Makino, and A. Okabe, J. Appl. Phys. 87, 2469 (2000).   DOI
9 W. I. Yang, J. G. Choi, and S. S. Lee, J. Korean Magn. Soc. 27, 82 (2017).   DOI
10 P. Khajidmaa, K. J. Park, and S. S. Lee, J. Korean Magn. Soc. 23, 98 (2013).   DOI
11 J. G. Choi and S. S. Lee, J. Korean Magn. Soc. 21, 132 (2011).   DOI
12 P. Khajidmaa, J. G. Choi, and S. S. Lee, J. Magn. 22, 7 (2017).   DOI
13 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009).   DOI
14 S. S. Lee and D. G. Hwang, New Phys.: Sae Mulli 37, 314 (1997).
15 J. G. Choi, D. G. Hwang, and S. S. Lee, J. Korean Magn. Soc. 19, 142 (2009).   DOI
16 P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013).   DOI