• Title/Summary/Keyword: Co deposition

Search Result 1,124, Processing Time 0.037 seconds

In-Line Manufacturing Tool Using Linear Belt Source Evaporation for Large Size Lighting OLED and Flexible OLED

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.91-94
    • /
    • 2007
  • We introduce the inline type mass production tool for the large size lighting OLEDs and flexible OLEDs. The manufacturing tool includes the linear belt source what is new concept for the organic deposition processes and the deposition operation combines directly to the encapsulation operation in a tool. The linear belt source evaporation in deposition processes is performed during the substrate transferring to innovatively improve the productivity in manufacturing.

  • PDF

Structure of Deposition Chamber using Belt Source Evaporation Techniques in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.186-189
    • /
    • 2007
  • The organic deposition chamber has been developed using belt source evaporation techniques for the first time. The deposition chamber is consisted of the belt source, organic vapor source, and the mask alignment assembly. The rollers operate for the thin metal belt to continuously move with the automatic tension control. It has been proved for the belt source evaporation easy to operate and the alignment of the substrate/shadow mask becomes so simple to use in AMOLED manufacturing industry.

  • PDF

Electrochemical Properties of Porous Co(OH)2 Nano-flake Thin Film Prepared by Electro-deposition for Supercapacitor (전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성)

  • Lee, Hyeon Jeong;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.157-162
    • /
    • 2016
  • Porous $Co(OH)_2$ nano-flake thin films were prepared by a potential-controlled electro-deposition technique at various deposition voltage (-0.75, -1.0, -1.2, and -1.4 V) on Ti-mesh substrates for supercapacitor application. The potential of electrode was controlled to regulate the film thickness and the amount of $Co(OH)_2$ nano-flake on the titanium substrate. The film thickness was shown to reach the maximum value of $34{\mu}m$ at -1.4 V of electrode potential, where 17.2 g of $Co(OH)_2$ was deposited on the substrate. The specific discharge capacitances were measured to be 226, 370, 720, and $1008mF\;cm^{-2}$ in the 1st cycle corresponding to the films which were formed at -0.75, -1.0, -1.2, and -1.4 V of electrode potentials, respectively. Then the discharge capacities were decreased to be 206, 349, 586 and $866mF/cm^{-2}$, where the persistency rates were 91, 94, 81, and 86%, respectively.

Interface Charateristics of Plasma co-Polymerized Insulating Film/Pentacene Semiconductor Film (플라즈마 공중합 고분자 절연막과 펜타센 반도체막의 계면특성)

  • Shin, Paik-Kyun;Lim, H.C.;Yuk, J.H.;Park, J.K.;Jo, G.S.;Nam, K.Y.;Park, J.K.;Kim, Y.W.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1349_1350
    • /
    • 2009
  • Thin films of pp(ST-Co-VA) were fabricated by plasma deposition polymerization (PVDPM) technique. Properties of the plasma polymerized pp(ST-Co-VA) thin films were investigated for application to semiconductor device as insulator. Thickness, dielectric property, composition of the pp(ST-Co-VA) thin films were investigated considering the relationship with preparation condition such as gas pressure and deposition time. In order to verify the possibility of application to organic thin film transistor, a pentacene thin film was deposited on the pp(ST-Co-VA) insulator by vacuum thermal evaporation technique. Crystalline property of the pentacene thin film was investigated by XRD and SEM, FT-IR. Surface properties at the pp(ST-Co-VA)/pentacene interface was investigated by contact angle measurement. The pp(ST-Co-VA) thin film showed a high-k (k=4.6) and good interface characteristic with pentacene semiconducting layer, which indicates that it would be a promising material for organic thin film transistor (OTFT) application.

  • PDF

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Characteristics of Co-deposition for Bi-superconductor Thin Film Using Ion Beam Sputtering Method (IBS 법으로 제작한 Bi 계 초전도 박막의 동시 증착 특성)

  • 박용필;이준웅
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.425-433
    • /
    • 1997
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 82$0^{\circ}C$ and the highly condensed ozone gas pressure(PO$_3$) in vacuum chamber was varied between 2.0$\times$10$^{-6}$ and 2.3$\times$10$^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and 795$^{\circ}C$ and single phase of Bi 2201 existed in the lower region than 785$^{\circ}C$. Whereas, PO$_3$dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with T$_{c}$(onset) of about 90 K and T$_{c}$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as CaCuO$_2$was observed in all of the obtained films.lms.

  • PDF

Effects of controlled environmental changes on the mineralization of soil organic matter

  • Choi, In-Young;Nguyen, Hang Vo-Minh;Choi, Jung Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2017
  • This study investigated how the combined changes in environmental conditions and nitrogen (N) deposition influence the mineralization processes and carbon (C) dynamics of wetland soil. For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in environmental conditions and N deposition on the anaerobic decomposition of organic carbon and the emission of greenhouse gases from wetland soil. A chamber with elevated $CO_2$ and temperature showed almost twice the reduction of total decomposition rate compared to the chamber with ambient atmospheric conditions. In addition, $CO_2$ fluxes decreased during the incubation under the conditions of ambient $CO_2$ and temperature. The decrease in anaerobic microbial metabolism resulted from the presence of vegetation, which influences the litter quality of soils. This can be supported by the increase in C/N ratio over the experimental duration. Principle component analysis results demonstrated the opposite locations of loadings for the cases at the initial time and after three months of incubation, which indicates a reduction in the decomposition rate and an increasing C/N ratio during the incubation. From the distribution between the decomposition rate and gas fluxes, we concluded that anaerobic decomposition rates do not have a significantly positive relationship with the fluxes of greenhouse gas emissions from the soil.

Characteristics of Surface Reaction of SnO2 Thin Films Prepared by MOCVD (MOCVD로 제조한 SnO2 박막의 표면반응 특성)

  • Park, Kyung-Hee;Seo, Yong-Jin;Hong, Kwang-Jun;Lee, Woo-Sun;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • Tin dioxide($_SnO2$) thin films were deposited on alumina substrate by metal-organic chemical vapor deposition (MOCVD) as a function of temperature and time. Thin films were fabricated from di-n-butyltin diacetate as a precursor and oxygen as an oxidation. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy(FE-SEM). The thickness was linearly increased with deposition time and $SnO_2$structure was found from $375^{\circ}C$ for the deposition time of 32 min. The maximum sensitivity to 500ppm CO gas was observed for the specimens deposited at $375^{\circ}C$ for 2 min at the operating temperature of $350^{\circ}C$. Gas sensitivity to CO increased with decreasing the film thickness. The sensing properties of response time, recovery and sensitivity of CO were changed with variations of substrate temperature and time.

Superconducting Characteristics of Bi Thin Film by Co-Deposition (동시 스퍼터 법에 의한 Bi 박막의 초전도 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.278-280
    • /
    • 2001
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and $820^{\circ}C$ and the highly condensed ozone gas pressure($PO_3$) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF