DOI QR코드

DOI QR Code

Electrochemical Properties of Porous Co(OH)2 Nano-flake Thin Film Prepared by Electro-deposition for Supercapacitor

전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성

  • Lee, Hyeon Jeong (Department of Chemical Engineering, Chungbuk National University) ;
  • Jin, En Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 이현정 (충북대학교 화학공학과) ;
  • 김은미 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2015.08.21
  • Accepted : 2015.11.03
  • Published : 2016.04.01

Abstract

Porous $Co(OH)_2$ nano-flake thin films were prepared by a potential-controlled electro-deposition technique at various deposition voltage (-0.75, -1.0, -1.2, and -1.4 V) on Ti-mesh substrates for supercapacitor application. The potential of electrode was controlled to regulate the film thickness and the amount of $Co(OH)_2$ nano-flake on the titanium substrate. The film thickness was shown to reach the maximum value of $34{\mu}m$ at -1.4 V of electrode potential, where 17.2 g of $Co(OH)_2$ was deposited on the substrate. The specific discharge capacitances were measured to be 226, 370, 720, and $1008mF\;cm^{-2}$ in the 1st cycle corresponding to the films which were formed at -0.75, -1.0, -1.2, and -1.4 V of electrode potentials, respectively. Then the discharge capacities were decreased to be 206, 349, 586 and $866mF/cm^{-2}$, where the persistency rates were 91, 94, 81, and 86%, respectively.

다공성 $Co(OH)_2$ 나노플레이크 박막은 전위제어 전착법을 이용하여 티타늄 메쉬에 여러 전착전위(-0.75, -1.0, -1.2 및 -1.4 V)에서 전착하여 슈퍼커패시터에 이용하였다. 티타늄 메쉬에 전착된 $Co(OH)_2$ 나노플레이크 박막의 두께 및 전착량은 전착전위의 제어에 의해 결정되었고 -1.4 V에서 전착한 $Co(OH)_2$ 나노플레이크 박막의 두께는 약 $34{\mu}m$로 가장 두껍게 전착되었으며 전착량은 17.2 g이다. 전착전위 -0.75, -1.0, -1.2 및 -1.4 V에서 전착한 경우 초기 방전용량은 각각 226, 370, 720 그리고 $1,008mF\;cm^{-2}$으로 나타났고 1,000 사이클 후 각각 206, 349, 586 그리고 $866mF\;cm^{-2}$으로 나타났다. 또한 이들의 용량유지율은 각각 91, 94, 81 및 86%로 나타났다.

Keywords

References

  1. Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., "Advanced Asymmetric Supercapacitors Based on $Ni(OH)_2$/Graphene and Porous Graphene Electrodes with High Energy Density," Adv. Funct. Mater., 22(12), 2632-2641(2012). https://doi.org/10.1002/adfm.201102839
  2. Miller, J. R. and Burke, A. F., "Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications," The Electrochem. Soc. Interface, 17(1), 53-57(2008).
  3. Simon, P. and Gogotsi, Y., "Materials for Electrochemical Capacitors," Nat. Mater., 7, 845-854(2008). https://doi.org/10.1038/nmat2297
  4. Largeot, C., Portet, C., Chmiola, J., Taberna, P. L., Gogotsi, Y. and Simon, P., "Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor," J. Am. Chem. Soc., 130(9), 2730-2731(2008). https://doi.org/10.1021/ja7106178
  5. Venugopal, N. and Kim, W. S., "New $\alpha$-$Zn_2V_2O_7$/Carbon Nanoture Nanocomposite for Supercapacitor," Korean J. Chem. Eng., 32(9), 1918-1923(2015). https://doi.org/10.1007/s11814-014-0392-9
  6. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and Schalkwijk, W. V., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nat. Mater., 4, 366-377(2005). https://doi.org/10.1038/nmat1368
  7. Wang, G., Zhang, L. and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chem. Soc. Rev., 41, 797-828(2012). https://doi.org/10.1039/C1CS15060J
  8. Choi, B. G., Huh, Y. S. and Hong, W. H., "Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode," Korean Chem. Eng. Res., 50(4), 754-757(2012). https://doi.org/10.9713/kcer.2012.50.4.754
  9. Shinde, N. M., Jagadale, A. D., Kumbhar, V. S., Rana, T. R., Kim, J. H. and Lokhande, C. D., "Wet Chemical Synthesis of $WO_3$ Thin Films for Supercapacitor Application," Korean J. Chem. Eng., 32(5), 974-979(2015). https://doi.org/10.1007/s11814-014-0323-9
  10. Gamby, J., Tabernaa, P. L., Simon, P., Fauvarquea, J. F. and Chesneau, M., "Studies and Characterisations of Various Activated Carbons Used for Carbon/carbon Supercapacitors," J. Power Sources, 101(1), 109-116(2001). https://doi.org/10.1016/S0378-7753(01)00707-8
  11. Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A. and Ruoff, R. S., "Carbon-Based Supercapacitors Produced by Activation of Graphene," Science, 24, 1537-1541(2011).
  12. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K. and Beguin, F., "Supercapacitors Based on Conducting Polymers/nanotubes Composites," J. Power Sources, 153(2), 413-418(2006). https://doi.org/10.1016/j.jpowsour.2005.05.030
  13. Jeong, H. and Jeong, S. M., "Electrochemical Properties of Graphenevanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors," Korean Chem., Eng. Res., 53(2), 131-136(2015). https://doi.org/10.9713/kcer.2015.53.2.131
  14. Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., "Advanced Asymmetric Supercapacitors Based on $Ni(OH)_2$/Graphene and Porous Graphene Electrodes with High Energy Density," Adv. Funct. Mater., 22, 2632-2641(2012). https://doi.org/10.1002/adfm.201102839
  15. Nagarajan, N., Humadi, H. and Zhitomirsky, I., "Cathodic Elecrodeposition of MnOx Films for Electrochemical Supercapacitors," Electrochim. Acta, 51(15), 3039-3045(2006). https://doi.org/10.1016/j.electacta.2005.08.042
  16. Chen, Z., Augustyn, W., Wen, J., Zhang, Y., Shen, M., Dunn, B. and Lu Y., "High-Performance Supercapacitors Based on Intertwined $CNT/V_2O_5$ Nanowire Nanocomposites," Adv. Mater., 23(6), 791-795(2011). https://doi.org/10.1002/adma.201003658
  17. Xia, X. H., Tu, J. P., Mai, Y. J., Wang, X. L., Gu, C. D. and Zhao, X. B., "Self-supported Hydrothermal Synthesized Hollow $Co_3O_4$ Nanowire Arrays with High Supercapacitor Capacitance," J. Mater. Chem., 21, 9319-9325(2011). https://doi.org/10.1039/c1jm10946d
  18. Jeong, M. G., Zhuo, K., Cherevko, S. and Chung C. H., "Formation of Nanoporous Nickel Oxides for Supercapacitors Prepared by Electrodeposition with Hydrogen Evolution Reaction and Electrochemical Dealloying," Korea J. Chem. Eng., 29(12), 1802-1805 (2012). https://doi.org/10.1007/s11814-012-0097-x
  19. Hu, C. C., Wang, C. W., Chang, K. H. and Chen, M. G., "Anodic Composite Deposition of $RuO_2$/reduced Graphene Oxide/carbon Nanotube for Advanced Supercapacitors," Nanotech., 26(27), 274004(2015). https://doi.org/10.1088/0957-4484/26/27/274004
  20. Jayashree, R. S. and Kamath, P. V., "Electrochemical Synthesis of $\alpha$-cobalt Hydroxide," J. Mater. Chem., 9(4), 961-963(1999). https://doi.org/10.1039/a807000h
  21. Ramesh, T. N., Rajamathi, M. and Kamath, P. V., "Ammonia Induced Precipitation of Cobalt Hydroxide: Observation of Turbostratic Disorder," Solid State Sci., 5(5), 751-756(2003). https://doi.org/10.1016/S1293-2558(03)00086-4
  22. Wang, R., Yan, X., Lang, J., Zheng, Z. and Zhang, P., "A Hybrid Supercapacitor Based on Fower-like $Co(OH)_2$ and Urchin-like VN Electrode Materials," J. Mater. Chem. A, 2, 12724-12732(2014). https://doi.org/10.1039/C4TA01296H
  23. Zhao, C., Wang, X., Wang, S., Wang, Y., Zhao, Y. and Zheng, W., "Synthesis of $Co(OH)_2$/graphene/Ni Foam Nano-electrodes with Excellent Pseudocapacitive Behavior and High Cycling Stability for Supercapacitors," Int. J. Hydrogen Energy, 37(16), 11846-11852(2012). https://doi.org/10.1016/j.ijhydene.2012.05.138
  24. He, Y. S., Bai, D. W., Yang, X., Chen, J., Liao, X. Z. and Ma, Z. F., "A $Co(OH)_2$-graphene Nanosheets Composite as a High Performance Anode Material for Rechargeable Lithium Batteries," Electrochem. commun., 12(4), 570-573(2010). https://doi.org/10.1016/j.elecom.2010.02.002
  25. Luo, H. M., Zhang, F. B., Zhao, X., Zhang, D. Y., Sun, Y. X., and Yang, P., "Preparation and Properties of Coke Powder Activated Carbon/$\alpha$-$Co(OH)_2$ Composite Electrode Materials," J. Mater. Sci.: Mater. Electron., 24(7), 2473-2478(2013).
  26. Zhao, T., Jiang, H. and Ma, J., "Surfactant-assisted Electrochemical Deposition of $\alpha$-cobalt Hydroxide for Supercapacitors," J. Power Sources, 196(2), 860-864(2011). https://doi.org/10.1016/j.jpowsour.2010.06.042
  27. Gupta, V., Kusahara, T., Toyama, H., Gupta, S. and Miura, N., "Potentiostatically Deposited Nanostructured $\alpha$-$Co(OH)_2$: A High Performance Electrode Material for Redox-capacitors," Electrochem. Commun., 9(9), 2315-2319(2007). https://doi.org/10.1016/j.elecom.2007.06.041
  28. Chang, J. K., Wu, C. M. and Sun, I. W., "Nano-Architectured $Co(OH)_2$ Electrodes Constructed Using an Aasily-Manipulated Electrochemical Protocol for High-Performance Energy Storage Applications," J. Mater. Chem., 20, 3729-3735(2010). https://doi.org/10.1039/b925176f
  29. Peng, C., Jin, J. and Chen, G. Z., "A Comparative Study on Electrochemical co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes," Electrochim. Acta., 53(2), 525-537(2007). https://doi.org/10.1016/j.electacta.2007.07.004
  30. Cao, L., Xu, F., Liang, Y. Y. and Li, H., "Preparation of the Novel Nanocomposite $Co(OH)_2$/ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density," Adv. Mater., 16(20), 1853-1857(2004). https://doi.org/10.1002/adma.200400183
  31. Kong, L. B., Lang, J. W., Liu, M., Luo, Y. C. and Kang, L., "Facile Approach to Prepare Loose-Packed Cobalt Hydroxide Nano-Flakes Materials for Electrochemical Capacitors," J. Power Sources, 194(2), 1194-1201(2009). https://doi.org/10.1016/j.jpowsour.2009.06.016
  32. Tao, F., Shen, Y., Liang, Y. and Li, H., "Synthesis and Characterization of $Co(OH)_2$/$TiO_2$ Nanotube Composites as Supercapacitor Materials," J. Solid State Electrochem., 11, 853-858(2007). https://doi.org/10.1007/s10008-006-0232-x

Cited by

  1. MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성 vol.24, pp.3, 2016, https://doi.org/10.7464/ksct.2018.24.3.183