• 제목/요약/키워드: Clouds

검색결과 1,002건 처리시간 0.023초

FAR-INFRARED CHARACTERISTICS OF GIANT MOLECULAR CLOUDS (거대 분자운의 원적외선 특성)

  • Jung, Jae-Hoon;Kim, Hyun-Goo;Kim, Bong-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • 제21권2호
    • /
    • pp.27-33
    • /
    • 2006
  • Infrared color-color diagram of 10 giant molecular clouds are examined to explore the dust property from the COBE Diffuse Infrared Background Experiment of the 100, 140, and $240{\mu}m$ emission. Four of them, Taurus, Mon OB1, Gem OB1, and Chameleon, show the anti-correlation in $R_{100/140}-R_{140/240}$ plot and the horizontal distribution in $R_{100/240}-R_{140/240}$ plot, which disagree with those of theoretical calculation. These could be explained by the depletion of $100{\mu}m$ and the excess of $140{\mu}m$ emission, though no existing dust model could support them. Mean color temperature of the anti-correlation region appears to be lower than that of the linear region, whose temperatures are 15.3, 17.0 K, respectively. And the linear region shows large dispersion in the plot of intensity relation. Both imply that a star formation would be more active, but not homogeneous, in the linear region compared to the anti-correlation region.

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS

  • KEMPER, F.
    • Publications of The Korean Astronomical Society
    • /
    • 제30권2호
    • /
    • pp.283-287
    • /
    • 2015
  • Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.

As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing

  • Kawashima, Kazuaki;Kanai, Satoshi;Date, Hiroaki
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.13-26
    • /
    • 2014
  • Recently, renovations of plant equipment have been more frequent because of the shortened lifespans of the products, and as-built models from large-scale laser-scanned data is expected to streamline rebuilding processes. However, the laser-scanned data of an existing plant has an enormous amount of points, captures intricate objects, and includes a high noise level, so the manual reconstruction of a 3D model is very time-consuming and costly. Among plant equipment, piping systems account for the greatest proportion. Therefore, the purpose of this research was to propose an algorithm which could automatically recognize a piping system from the terrestrial laser-scanned data of plant equipment. The straight portion of pipes, connecting parts, and connection relationship of the piping system can be recognized in this algorithm. Normal-based region growing and cylinder surface fitting can extract all possible locations of pipes, including straight pipes, elbows, and junctions. Tracing the axes of a piping system enables the recognition of the positions of these elements and their connection relationship. Using only point clouds, the recognition algorithm can be performed in a fully automatic way. The algorithm was applied to large-scale scanned data of an oil rig and a chemical plant. Recognition rates of about 86%, 88%, and 71% were achieved straight pipes, elbows, and junctions, respectively.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제36권1호
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

Star Formation Activity in Infra-Red Dark Cloud at ${\Gamma}53.2^{\circ}$

  • Kim, Hyun-Jeong;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제36권1호
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Infra-Red Dark Clouds (IRDCs) seen silhouette against the bright Galactic background in mid-IR are a class of interstellar clouds that are dense and cold with very high column densities. While IRDCs are believed to be the precursors to massive stars and star clusters, individual IRDCs show diverse star forming activities within them. We report a remarkable example of such cloud, the IRDC at ${\Gamma}53.2^{\circ}$, and star formation activity in this cloud. The IRDC was previously identified in part as three separate, arcmin-size clouds in the catalogue of MSX IRDC candidates, but we found that the IRDC is associated with a long, filamentary CO cloud at 2 kpc from the Galactic Ring Survey data of $^{13}CO$ J = 1-0 emission, and that its total extent reaches ~ 30pc. The Spitzer MIPSGAL 24mm data show a number of reddened mid-IR sources distributed along the IRDC which are probably young stellar objects (YSOs), and the UWISH2 $H_2$ data (2.122mm) reveal ubiquitous out flows around them. These observations indicate that the IRDC is a site of active star formation with YSOs in various evolutionary stages. In order to investigate the nature of mid-IR sources, we have performed photometry of MIPSGAL data, and we present a catalogue of YSOs combining other available point source catalogues from optical to IR. We discuss the evolutionary stages and characteristics of YSOs from their IR colors and spectral energy distributions.

  • PDF

Dense Core Formation in Filamentary Clouds: Accretion toward Dense Cores from Filamentary Clouds and Gravitational Infall in the Cores

  • Kim, Shinyoung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Kim, Mi-Ryang;Chung, Eun Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제44권1호
    • /
    • pp.70.3-70.3
    • /
    • 2019
  • Understanding how the filamentary structure affects the formation of the prestellar cores and stars is a key issue to challenge. We use the Heterodyne Array Receiver Program (HARP) of the James Clerk Maxwell Telescope (JCMT) to obtain molecular line mapping data for two prestellar cores in different environment, L1544 in filamentary cloud and L694-2 in a small cloud isolated. Observing lines are $^{13}CO$ and $C^{18}O$ (3-2) line to find possible flow motions along the filament, $^{12}CO$ (3-2) to search for any radial accretion (or infalling motions) toward the cores of gas material from their surrounding regions, and $HCO^+$ (4-3) lines to find at which density and which region in the core gases start to be in gravitational collapse. In the 1st moment maps of $^{13}CO$ and $C^{18}O$, velocity gradient patterns implying the flow of material were found at the cores and its surrounding filamentary clouds. The infall asymmetry patterns of HCO+ and $^{13}CO$ line profiles were detected to be good enough to analyze the infalling motions toward the cores. We will report further analysis results on core formation in the filamentary cloud at this meeting.

  • PDF

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • 제43권4호
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

Comparative Analysis of Effective RCS Prediction Methods for Chaff Clouds (효과적인 채프 구름의 RCS 예측 방법 비교 분석 연구)

  • Kim, Min;Lee, Myung-Jun;Lee, Seong-Hyeon;Park, Sung-ho;Kong, Young-Joo;Woo, Seon-Keol;Kim, Hong-Rak;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권3호
    • /
    • pp.233-240
    • /
    • 2018
  • Radar cross section (RCS) analysis of chaff clouds is essential for the accurate detection and tracking of missile targets using radar. For this purpose, we compare the performance of two existing methods of predicting RCS of chaff clouds. One method involves summing up the RCS values of individual chaffs in a cloud, while the other method predicts the RCS values using aerodynamic models based on the probability density function. In order to compare and analyze the two techniques more precisely, the RCS of a single chaff computer-aided design model consisting of a half wavelength dipole was calculated using the commercial electromagnetic numerical analysis software, FEKO 7.0, to estimate the RCS values of chaff clouds via simulation. Thus, we verified that our method using the probability density distribution model is capable of analyzing the RCS of chaff clouds more efficiently.

A Review of Precipitation Susceptibility in Warm Boundary Layer Clouds (따뜻한 구름에서의 강수민감도에 대한 고찰)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • 제40권2호
    • /
    • pp.109-118
    • /
    • 2019
  • Cloud-aerosol interactions are considered to be one of the most important forcing mechanisms in the climate system. However, there is considerable disagreement on the magnitude and even on the sign of how aerosol perturbations affect cloud fraction and lifetime. Furthermore, aerosol effects on clouds and precipitation are not readily separable from the effects of meteorology. This review paper summarizes the study of precipitation susceptibility $S_o$, which qualifies how aerosol perturbations alter the magnitude of the precipitation rate (R) while minimizing the effects of macrophysical factors such as cloud depth (H) and liquid water path (LWP). The analysis shows that the precipitation susceptibility $S_o$ for the warm marine boundary layer clouds is insensitive to aerosol perturbations at low LWP (equivalently low H). However, R decreases as aerosols increase at intermediate LWP. This is because aerosols act as cloud seed and produce numerous small-sized particles, which impede the collision and coalescence process that leads to precipitation. At high LWP, $S_o$ decreases with increasing LWP as there are enough water contents in the clouds. The LWP or H dependent $S_o$ behavior differs depending on the predominant cloud physics processes in the clouds.