DOI QR코드

DOI QR Code

A Review of Precipitation Susceptibility in Warm Boundary Layer Clouds

따뜻한 구름에서의 강수민감도에 대한 고찰

  • Jung, Eunsil (School of Disaster Prevention and Environmental Engineering, Kyungpook National University)
  • 정은실 (경북대학교 건설방재공학부)
  • Received : 2019.02.12
  • Accepted : 2019.04.23
  • Published : 2019.04.30

Abstract

Cloud-aerosol interactions are considered to be one of the most important forcing mechanisms in the climate system. However, there is considerable disagreement on the magnitude and even on the sign of how aerosol perturbations affect cloud fraction and lifetime. Furthermore, aerosol effects on clouds and precipitation are not readily separable from the effects of meteorology. This review paper summarizes the study of precipitation susceptibility $S_o$, which qualifies how aerosol perturbations alter the magnitude of the precipitation rate (R) while minimizing the effects of macrophysical factors such as cloud depth (H) and liquid water path (LWP). The analysis shows that the precipitation susceptibility $S_o$ for the warm marine boundary layer clouds is insensitive to aerosol perturbations at low LWP (equivalently low H). However, R decreases as aerosols increase at intermediate LWP. This is because aerosols act as cloud seed and produce numerous small-sized particles, which impede the collision and coalescence process that leads to precipitation. At high LWP, $S_o$ decreases with increasing LWP as there are enough water contents in the clouds. The LWP or H dependent $S_o$ behavior differs depending on the predominant cloud physics processes in the clouds.

구름과 에어로졸의 상호 작용은 기후 시스템에서 중요한 강제력 메커니즘 중 하나로 알려져 있지만, 에어로졸 변화가 구름의 양과 수명에 미치는 영향에 대해서는 서로 일치하지 않는 연구결과를 보이고 있다. 더구나 구름과 강수에 대한 에어로졸 효과는 기상요인으로부터 발생하는 효과와 쉽게 분리되지 않는다. 이 논문에서는 구름두께(H), 액체수함량(Liquid water path, LWP)과 같은 구름 거시물리 인자들이 강수에 미치는 영향을 최소화한 상태에서, 에어로졸 농도 변화가 강수변화에 미치는 영향을 기술하는, 강수민감도($S_o$)에 대한 연구를 살펴보았다. 구름 두께가 얇거나 구름이 포함하고 있는 액체수함량이 작을 경우 에어로졸 농도가 증가하여도 강수율에는 변화가 없었다. 그러나 구름 두께나 액체수함량이 중간 정도인 경우에는 에어로졸 농도가 증가할수록 강수량이 감소한다. 이것은 대기 중에 존재하는 에어로졸이 구름씨앗으로 작용하여 수많은 작은 크기의 구름입자를 생성하여, 강수로 이어지는 충돌 병합과정을 억제하기 때문이다. 구름두께나 액체수함량이 큰 경우에는 대기 중에 이미 충분한 수분이 존재하여, LWP 또는 H가 증가할수록 강수민감도는 감소한다. 이러한 LWP 또는 H 영역에 따른 강수민감도 변화특성은 구름 속에서 작용하는 우세한 구름물리 과정에 따라 다르게 나타난다.

Keywords

References

  1. Albrecht, B. A., 1981, Parameterization of trade-cumulus cloud amounts. Journal of the Atmospheric Sciences, 38, 97-105. https://doi.org/10.1175/1520-0469(1981)038<0097:POTCCA>2.0.CO;2
  2. Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S., 2004, Reectivity and rain rate in and below drizzling stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130, 2891-2918. https://doi.org/10.1256/qj.03.187
  3. Duong, H.T., Sorooshian, A., and Feingold, G., 2011, Investigating potential biases in observed and modeled metrics of aerosol-cloud precipitation interactions. Atmospheric Chemistry and Physics, 11, 4027-4037, doi:10.5194/acp-11-4027-2011.
  4. Feingold, G. and Siebert, H., 2009, Clouds in the perturbed climate system: Their relationship to energy balance, atmospheric dynamics, and precipitation. In Heintzenberg, J. and Charlson, R. J. (eds.), The MIT Press, Cambridge, Massachusetts, London, England, 597 p.
  5. Feingold, G., McComiskey, A., Rosenfeld, D., and Sorooshian, A., 2013, On the relationship between cloud contact time and precipitation susceptibility to aerosol. Journal of Geophysical Research, 118, 10544-10554.
  6. Gettelman, A., Morrison, H., Terai, C.R., and Wood, R., 2013, Microphysical process rates and global aerosolcloud interactions. Atmospheric Chemistry and Physics, 13, 9855-9867, doi:10.5194/acp-13-98552013.
  7. Johnson, B.T., Shine, K.P., and Forster, P.M., 2004, The semidirect aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422. https://doi.org/10.1256/qj.03.61.
  8. Jiang, H., Feingold, G., and Sorooshian, A., 2010, Effect of aerosol on the susceptibility and efciency of precipitation in trade cumulus clouds. Journal of the Atmospheric Sciences, 67, 3525-3540. https://doi.org/10.1175/2010JAS3484.1
  9. Jung, E., Albrecht, B.A., Feingold, G., Jonsson, H.H., Chuang, P., and Donaher, S.L., 2016a, Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment-Part 1: Distributions and variability. Atmospheric Chemistry and Physics, 16, 8643-8666, doi:10.5194/acp-16-8643-2016.
  10. Jung, E., Albrecht, B.A., Sorooshian, A., Zuidema, P., and Jonsson, H.H., 2016b, Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements. Atmospheric Chemistry and Physics, 16, 11395-11413, doi:10.5194/acp-16-11395-2016, 2016b.
  11. Khairoutdinov, M. and Kogan, Y., 2000, A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Monthly Weather Review, 128, 229-243. https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2
  12. Lee, S.S., Kim, B.-G., Li, Z., Choi, Y.-S., Jung, C.-H., Um, J., Mok, J., and Seo, K.-H., 2018, Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades. Atmospheric Chemistry and Physics, 18, 12531-12550, https://doi.org/10.5194/acp-18-12531-2018.
  13. Lu, M. -L., Sorooshian, A., Jonsson, H. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H., 2009, Marine stratocumulus aerosol-cloud relationships in the MASEII experiment: Precipitation susceptibility in eastern Pacic marine stratocumulus. Journal of Geophysical Research, 114, D24203, doi:10.1029/2009JD012774.
  14. Mann, J.A.L, Chiu, J.C., Hogan, R.J., O'Connor, E.J., L'Ecuyer, T.S., Stein, T.H.M., and Jefferson, A., 2014, Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. Journal of Geophysical Research, 119, 4136-4148, doi:10.1002/2013JD021339.
  15. Rasch, P. J. and Kristjansson, J. E., 1998, A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. Journal of Climate, 11, 1587-1614. https://doi.org/10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2
  16. Rauber, R.M., Ochs III, H.T., Di Girolamo, L., Göke, S., Snodgrass, E., Stevens, B., Knight, C., Jensen, J.B., Lenschow, D.H., Rilling, R.A., Rogers, D.C., Stith, J.L., Albrecht, B.A., Zuidema, P., Blyth, A.M., Fairall, C.W., Brewer, W.A., Tucker, S., Lasher-Trapp, S.G., Mayol-Bracero, O.L., Vali, G., Geerts, B., Anderson, J.R., Baker, B.A., Lawson, R.P., Bandy, A.R., Thornton, D.C., Burnet, E., Brenguier, J-L., Gomes, L., Brown, P.R.A., Chuang, P., Cotton, W.R., Gerber, H., Heikes, B.G., Hudson, J.G., Kollias, P., Krueger, S.K., Nuijens, L., O'Sullivan, D.W., Siebesma, A.P., and Twohy, C.H., 2007, Rain in shallow cumulus over the ocean. Bulletin of the American Meteorological Society, 88, 1912-1928. https://doi.org/10.1175/BAMS-88-12-1912
  17. Rosenfeld, D., Lohmann, U., Raga, G.B., Dowd, C.D.O., Kulmala, M., Fuzzi, S., Meinrat, O., Andreae, M.O., 2008, Flood or drought: how do aerosols affect precipitation? Science, 321, 1309-1313. https://doi.org/10.1126/science.1160606
  18. Sorooshian, A., Feingold, G., Lebsock, M.D., Jiang, H., and Stephens, G., 2009, On the precipitation susceptibility of clouds to aerosol perturbations. Geophysical Research Letter, 36, L13803, doi:10.1029/2009GL038993.
  19. Sorooshian, A., Feingold, G., Lebsock, M.D., Jiang, H., and Stephens, G., 2010, Deconstructing the precipitation susceptibility construct: improving methodology for aerosol cloud-precipitation studies. Journal of Geophysical Research, 115, D17201, doi:10.1029/2009JD013426.
  20. Stevens, B. and Feingold, G., 2009, Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607-613. https://doi.org/10.1038/nature08281
  21. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., 2013, Intergovernmental Panel on Climate Change (IPCC): The Physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1585 p.
  22. Terai, C.R., Wood, R., Leon, D.C., and Zuidema, P., 2012, Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmospheric Chemistry and Physics, 12, 4567-4583, doi:10.5194/acp-12-4567-2012.
  23. Terai, C.R., Wood, R., and Kubar, T.L., 2015, Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds. Journal of Geophysical Research, 120, 8878-8889. https://doi.org/10.1002/2015JD023319
  24. Twomey, S.A., 1959, The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 43, 243-249. https://doi.org/10.1007/BF01993560
  25. Wang, M., Ghan, S., Liu, X., L'Ecuyer, T.S., Zhang, K., Morrison, H.M., Ovchinnikov, R.E., Marchand, R., Chand, D., Qian, Y., and Penner, J.E., 2012, Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophysical Research Letter, 39, L15709, doi:10.1029/2012GL052204.
  26. Wood, R., Kubar, T. L., and Hartmann, D. L., 2009, Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. Journal of Atmospheric Sciences, 66, 2973-2990, doi:10.1175/2009JAS3072.1.