• Title/Summary/Keyword: Clostridium butyricum

Search Result 47, Processing Time 0.021 seconds

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

In vitro antibacterial activities of Pozzolan as a dietary silicate minerals supplementation to animals (가축에 대한 보조사료 규산염제로서 포졸란의 in vitro 항균 효과)

  • Kim, Chang-Hyun;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.778-785
    • /
    • 2020
  • The purpose of this study was to investigate in vitro antibacterial activities of pozzolan against super bacteria and intestinal bacteria. There were four treatment groups: 1) CON, pozzolan free control group; 2) DP0.3, microbial culture medium prepared by mixing distilled water and 0.3% of pozzolan powder; 3) DP0.5, microbial culture medium prepared by mixing distilled water and 0.5% of pozzolan powder; and 4) PE, microbial culture medium prepared with pozzolan powder extracts without adding distilled water. The count of Lacctobacillus casei was significantly higher in the DP0.3 group compared to CON (P<0.05). However, it showed no significant difference compared to other treatment groups. Numbers of Clostridium butyricum, Escherichia coli, and Salmonella typhimurium were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). Clostridium butyricum and Salmonella typhimurium counts were significantly different among DP0.3, DP0.5, and PE groups (P<0.05). Counts of E. coli were also significantly between DP0.5 and PE groups (P<0.05). Counts of MRSA and VRE were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). MRSA counts were significantly different among DP0.5, DP0.3 and PE groups. VRE counts were significantly higher in the order of PE > DP0.3> DP0.5> CON (P<0.05). These results suggest that pozzolan could be used as a dietary silicate supplement and a natural antibacterial agent for livestock if its antimicrobial activity against super bacteria and harmful bacteria in the intestine is confirmed.

Biological hydrogen production using Chlamydomonas reindardtii biomass (Chlamydomonas reinhardtii 바이오매스를 이용한 생물학적 수소생산)

  • Kim, Mi-Sun;Baek, Jin-Sook;Kim, Sun Chang
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.4
    • /
    • pp.309-316
    • /
    • 2004
  • Chlamydomonas reinhardtii UTEX 90 was cultivated with continuous supply of 2% $CO_2$ using TAP media at $25^\circ{C}$ and produced biomass 1.18 g of dry cell weight/L for 4 days. C. reinhardtii algal biomass(CAB) was concentrated to 20 times by volume and converted into hydrogen and organic acids by anaerobic fermentation using Clostridium butyricum. Organic acids in the fermentate of CAB were consecutively used to produce hydrogen by Rhodobacter sphaeroides KD 131 under the light condition. Approximately 52% of starch in the concentrated CAB which had 4-5.8, 24-26 and 6-7 g/L of starch, protein and fat, respectively was degraded by Cl. butyricum at $37^\circ{C}$. During this process, hydrogen and some organic acids, such as formate, acetate, propionate, and butyrate, respectively were produced. Further conversion of the organic acids in anaerobic fermentate of CAB by Rb. sphaeroides KD131 produced hydrogen from the anaerobic fermentate under the illumination of 8 klux using halogen lamp at $30^\circ{C}$. The result showed that hydrogen was evolved by the anaerobic conversion using Cl. butyricum and then by the photosynthetic fermentation using Rb. sphaeroides KD131. It indicated that the two-step conversion process produced the maximum amount of hydrogen from algal biomass which contained carbohydrate, protein, and fat via organic acids.

The Growth Promoting Effect of Useful Entevobacteria Clostridium butyricum KCTC 1785 by Combination of Natural Products Bearing Antioxidative Capacity (장내 유용세균 Clostridium butyricum KCTC 1785의 성장을 촉진시키는 항산화 천연산물의 조합구성)

  • 김종덕
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.595-604
    • /
    • 2002
  • The growth promoting effect of Clostridium hutyricum KCTC 1785 was investigated with natural products bearing antioxidative capacity, and combined two, three and four kinds of them. C. butyricum was showed a good growth by Lycii fructus, Sophorae flos, Chelidonium majus L., Atractylodis rhizoma alba, Paeonia japonica, alone, and two mixed com-binations were composed of Paeonia japonica and Epimedii herba, Paeonia japonica and Aurantii nobilis pericarpium, Paeonia japonica and Puerariae radix, Pneonia japonica and Angelicae gigantis radix, and three mixed combinations were organized with Epimedii herba, Sophorae flos and Nnelumbo nuclfera gaertner, and Epimedii herba, Sophorae flos and Scutellaria haicalensis george, and Epimedii herba, Sophorae flos and theae folium, and Epimedii herba, Paeonia japonica and Angelicae gigantis radix, and four mixed combinations were formed with Epimedii herba, Puerariae radix, Nelumbo nuclfera gaertner and Paeonia japonica, and Epimedii herba, Puerariae radix, Nelumbo nuclfera gaertner and Theae folium, and Epimedii berba, puerariae radix, Nelumbo nuclfera gaertner and Angelicae gigantis radix, and puerariae radix, Nelumbo nuclfera gaertner, paeonia japonica and Theae folium. As these combinations of natural products could activate some parts fo body, they might be applied to pharmaceuitcal applications, functional foods, antiaging tea, also expected to promote useful enterobacterial growth for multifunctional fermentative beverage.

Allergy Immunity Regulation and Synergism of Bifidobacteria (Bifidobacteria의 allergy 면역 조절과 synergism)

  • Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.482-499
    • /
    • 2017
  • Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.

Effects of Carbohydrate, Protein and Lipid Content of Substrate on Hydrogen Production and Microbial Communities (탄수화물, 단백질, 지방 함량에 따른 혐기성 수소 발효시 부산물 및 미생물 군집 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.440-446
    • /
    • 2017
  • This study was aimed at evaluating the effects of carbohydrate, protein and lipid content of substrate on hydrogen yields and microbial communities. The hydrogen yields were linearly correlated to carbohydrate content of substrates while others (content of proteins and lipids) did not make a significant contribution. The chemical composition of substrates produced effects on the final products of anaerobic hydrogen fermentation. Acetate and butyrate were the main fermentation products, with their concentration proving to correlate with carbohydrate and protein content of substrates. The result of microbial community analysis revealed that the relative abundances of Clostridium butyricum increased and Clostridium perfringens decreased as the carbohydrate content increased.

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

The Destruction of Bacterial Spores Upon Compressional Pressure (타정 압력에 의한 세균포자의 파괴현상)

  • Lee, Cherl-Ho;Kim, Young-Man;Lee, Jung-Chi;Jung, Pil-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.272-277
    • /
    • 1980
  • The tolerance of useful bacterial spores to the conditions of tablet making, specifically, the destruction of bacterial spores upon compressional pressure was investigated. The damage of bacterial spores occurred mainly during the tabletting. The bacterial spores obeyed a logarithmic destruction rate upon compressional pressure. The spore destruction rate was dependent upon the strains of microorganism. The Decimal Reduction Pressure, designated as P-value, were $2.9\;ton/cm^2$, $2.6\;ton/cm^2$ and $2.1\;ton/cm^2$ for the spores of Bacillus subtilis, Bacilus coagulans and Clostridium butyricum, respectively, and $1.7\;ton/cm^2$ for the vegetative cell of Streptococcus faecalis. The spore destruction upon compressional pressure was influenced by the type of filler. The P-value of the spore of B. coagulans was $2.8\;ton/cm^2$ in the lactose filler, but $2.0\;ton/cm^2$ in the starch filler. The number of viable spores was inversely proportional to the hardness and density of tablet, in case that the same type of filler was used. The starch filler, which resulted in the lower hardness and lower density of tablet, caused higher spore destruction rate compared with the lactose filler.

  • PDF

Effects of the Water-extract of Sinomeniiacuti Radix(Sinomenium acuturn) on the Growth of Some Intestinal Microorganisms (방기(Sinomenium acutum)의 물추출물이 주요 장내 미생물의 생육에 미치는 영향)

  • 신옥호;유시승;이완규;신현경
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.491-497
    • /
    • 1992
  • The water extract of Sinomeniiacuti Radix (Sinomenium acutum) was found out to have a strong inhibition activity on the growth of Clostridium perfringens. The anti-bacterial activity was stable at the range of pH 1 to pH 13 and kept in a thermal treatment at $121^{\circ}C$ for 15 minutes. The minmal inhibition concentration of the Sinomeniiacuti Radix extract on the growth of Cl. peifringens was 1000 ppm. The Sinomeniiacuti Radix extract also suppressed the growth of Cl. ramosum, Cl. paraputnficum, Cl. butyn'cum, Bifidobacterium blficum, Bacteriodes fragilis, Eubacterium limosum. The extract, however, did not inhibit the growth of Bif adolescentis, Blf. infantis, Bif longum, E. coli. Enterococcus faecalis and Staphylococcus aureus. On the other hand, the extract showed a promoting effect for the growth of Bif animalis and Lactobacillus acidophilus.

  • PDF