Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.4.482

Allergy Immunity Regulation and Synergism of Bifidobacteria  

Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Choi, In Soon (Department of Biological Science, Silla University)
Publication Information
Journal of Life Science / v.27, no.4, 2017 , pp. 482-499 More about this Journal
Abstract
Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.
Keywords
Allergy; Bifidobacteria; Butyrate; Clostridium butyricum; CpG ODN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kozakova, H., Schwarzer, M., Tuckova, L., Srutkova, D., Czarnowska, E., Rosiak, I., Hudcovic, T., Schabussova, I., Hermanova, P., Zakostelska, Z., Aleksandrzak-Piekarczyk, T., Koryszewska-Baginska, A., Tlaskalova-Hogenova, H. and Cukrowska, B. 2016. Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell. Mol. Immunol. 13, 251-262.   DOI
2 Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549.   DOI
3 Laffont, S., Siddiqui, K. R. and Powrie, F. 2010. Intestinal inflammation abrogates the tolerogenic properties of MLN $CD103^+$ dendritic cells. Eur. J. Immunol. 40, 1877-1883.   DOI
4 Lee, J., Mo, J. H., Katakura, K., Alkalay, I., Rucker, A. N., Liu, Y. T., Lee, H. K., Shen, C., Cojocaru, G., Shenouda, S., Kagnoff, M., Eckmann, L., Ben-Neriah, Y. and Raz, E. 2006. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327-1336.   DOI
5 Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q. and Fan, C. 2011. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783-8789.   DOI
6 Liao, H. Y., Tao, L., Zhao, J., Qin, J., Zeng, G. C., Cai, S. W., Li, Y., Zhang, J. and Chen, H. G. 2016. Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients. Sci. Rep. 6, 20481.   DOI
7 Ling, Z., Liu, X., Cheng, Y., Luo, Y., Yuan, L., Li, L. and Xiang, C. 2015. Clostridium butyricum combined with Bifidobacterium infantis probiotic mixture restores fecal microbiota and attenuates systemic inflammation in mice with antibiotic-associated diarrhea. Biomed. Res. Int. 2015, 582048.
8 Dai, S. Y., Nakagawa, R., Itoh, A., Murakami, H., Kashio, Y., Abe, H., Katoh, S., Kontani, K., Kihara, M., Zhang, S. L., Hata, T., Nakamura, T., Yamauchi, A. and Hirashima, M. 2005. Galectin-9 induces maturation of human monocyte- derived dendritic cells. J. Immunol. 175, 2974-2981.   DOI
9 de Kivit, S., Saeland, E., Kraneveld, A. D., van de Kant, H. J., Schouten, B,, van Esch, B. C., Knol, J., Sprikkelman, A. B., van der Aa, L. B., Knippels, L. M., Garssen, J., van Kooyk, Y. and Willemsen, L. E. 2012. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67, 343-352.   DOI
10 Durre, P. 2014. Physiology and Sporulation in Clostridium. Microbiol. Spectr. 2, TBS-0010-2012.
11 Enomoto, T., Sowa, M., Nishimori, K., Shimazu, S., Yoshida, A., Yamada, K., Furukawa, F., Nakagawa, T., Yanagisawa, N., Iwabuchi, N., Odamaki, T., Abe, F., Nakayama, J. and Xiao, J. Z. 2014. Effects of Bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol. Int. 63, 575-85.   DOI
12 Ewaschuk, J. B., Backer, J. L., Churchill, T. A., Obermeier, F., Krause, D. O. and Madsen, K. L. 2007. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect. Immun. 75, 2572-2579.   DOI
13 Falony, G., Verschaeren, A., De Bruycker, F., De Preter, V., Verbeke, K., Leroy, F. and De Vuyst, L. 2009. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate- producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl. Environ. Microbiol. 75, 5884-5892.   DOI
14 Menard, O., Gafa, V., Kapel, N., Rodriguez, B., Butel, M. J. and Waligora-Dupriet, A. J. 2010. Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl. Environ. Microbiol. 76, 2846-2855.   DOI
15 Maloy, K. J. and Powrie, F. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298-306.   DOI
16 Marsland, B. J. and Salami, O. 2015. Microbiome influences on allergy in mice and humans. Curr. Opin. Immunol. 36, 94-100.   DOI
17 Menard, O., Butel, M. J., Gaboriau-Routhiau, V. and Waligora-Dupriet, A. J. 2008. Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl. Environ. Microbiol. 74, 660-666.   DOI
18 Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J. F., Rougeot, C., Pichelin, M., Cazaubiel, M. and Cazaubiel, J. M. 2011. Assessment of psychotropic- like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755-764.   DOI
19 Milani, C., Lugli, G. A., Duranti, S., Turroni, F., Bottacini, F., Mangifesta, M., Sanchez, B., Viappiani, A., Mancabelli, L., Taminiau, B., Delcenserie, V., Barrangou, R., Margolles, A., van Sinderen, D. and Ventura, M. 2014. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80, 6290-6302.   DOI
20 Mileti, E., Matteoli, G., Iliev, I. D. and Rescigno, M. 2009. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 4, e7056.   DOI
21 Gueimonde, M., Ouwehand, A., Huhtinen, H., Salminen, E. and Salminen, S. 2007. Qualitative and quantitative analyses of the Bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J. Gastroenterol. 13, 3985-3989.   DOI
22 Mylonaki, M., Rayment, N. B., Rampton, D. S., Hudspith, B. N. and Brostoff, J. 2005. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm. Bowel. Dis. 11, 481-487.   DOI
23 FAO/WHO. 2001. Expert consultation on evaluation of health and nutritional properties of probiotics in food including milk powder with live lactic acid bacteria. FAO/WHO (Food and Agriculture Organization/World Health Organization) Cordoba, Argentina: WHO; http://www.who.int/foodsafety/publications/fs_management/ en/probiotics.pdf.
24 FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group, 30 April-1 May, Ontario, Canada.
25 Forsythe, P. 2010. Bienenstock J: Immunomodulation by commensal and probiotic bacteria. Immunol. Invest. 9, 429-448.
26 Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543-547.   DOI
27 Hanagata, N. 2012. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int. J. Nanomedicine 7, 2181-2195.
28 Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. and Welling, G. W. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61-67.   DOI
29 NCBI. 2017. https://www.ncbi.nlm.nih.gov/pubmed.
30 Narushima, S., Sugiura, Y., Oshima, K., Atarashi, K., Hattori, M., Suematsu, M. and Honda, K. 2014. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333-339.   DOI
31 Neujahr, D. C., Reich, C. F. and Pisetsky, D. S. 1999. Immunostimulatory properties of genomic DNA from different bacterial species. Immunobiology 200, 106-119.   DOI
32 Nishikawa, M., Matono, M., Rattanakiat, S., Matsuoka, N. and Takakura, Y. 2008. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology 124, 247-255.   DOI
33 Nishikawa, M., Mizuno, Y., Mohri, K., Matsuoka, N., Rattanakiat, S., Takahashi, Y., Funabashi, H., Luo, D. and Takakura, Y. 2011. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials 32, 488-494.   DOI
34 Nylund, L., Nermes, M., Isolauri, E., Salminen, S., de Vos, W. M. and Satokari, R. 2015. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 70, 241-244.   DOI
35 Ahern, P. P., Faith, J. J. and Gordon, J. I. 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity 40, 815-823.   DOI
36 Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. 2004. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192.   DOI
37 Penders, J., Gerhold, K., Stobberingh, E. E., Thijs, C., Zimmermann, K., Lau, S. and Hamelmann, E. 2013. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J. Allergy Clin. Immunol. 132, 601-607.   DOI
38 Perrier, C. and Corthesy, B. 2011. Gut permeability and food allergies. Clin. Exp. Allergy 41, 20-28.   DOI
39 Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F. and Matuchansky, C. 2005. Review article: Bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22, 495-512.   DOI
40 Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L. and Jenmalm, M. C. 2014. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 44, 842-850.   DOI
41 Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J. and Rudensky, A. Y. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451-455.   DOI
42 Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. and Rescigno, M. 2009. Intestinal epithelial cells promote colitis- protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal. Immunol. 2, 340-350.   DOI
43 Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., Yagi, F. and Kasai, K. 2002. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572, 232-254.   DOI
44 Iijima, K., Kobayashi, T., Hara, K., Kephart, G. M., Ziegler, S.F., McKenzie, A. N. and Kita, H. 2014. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J. Immunol. 193, 1549-1559.   DOI
45 Iliev, I. D., Kitazawa, H., Shimosato, T., Katoh, S., Morita, H., He, F., Hosoda, M. and Saito, T. 2005. Strong immunostimulation in murine immune cells by Lactobacillus hamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cell. Microbiol. 7, 403-414.   DOI
46 Saarialho-Kere, U. 2004. The gut-skin axis. J. Pediatr. Gastroenterol. Nutr. 39, S734-S735.   DOI
47 Rabinovich, G. A. and Toscano, M. A. 2009. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338-352.   DOI
48 Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. and Takakura, Y. 2009. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701-5706.   DOI
49 Riviere, A., Selak, M., Lantin, D., Leroy, F. and De Vuyst, L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979.
50 Tokunaga, T., Yamamoto, H., Shimada, S., Abe, H., Fukuda, T., Fujisawa, Y., Furutani, Y., Yano, O., Kataoka, T. and Sudo, T., et al. 1984. Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG: I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst. 72, 955-962.
51 Turroni, F., Marchesi, J. R., Foroni, E., Gueimonde, M., Shanahan, F., Margolles, A., van Sinderen, D. and Ventura, M. 2009. Microbiomic analysis of the Bifidobacterial population in the human distal gut. ISME J. 3, 745-751.   DOI
52 Uehara, A., Fujimoto, Y., Fukase, K. and Takada, H. 2007. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100-3111.   DOI
53 Vanderpool, C., Yan, F. and Polk, D. B. 2008. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel. Dis. 14, 1585-1596.   DOI
54 Vasiljevic, T. and Shah, N. P. 2008. Probiotics-from Metchnikoff to bioactives. Int. Dairy J. 18, 714-728.   DOI
55 Ventura, M., Turroni, F. and van Sinderen, D. 2012. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng. Bugs. 3, 73-79.
56 Wang, J., Wen, L., Wang, Y. and Chen, F. 2016. Therapeutic Effect of Histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis in vivo. DNA Cell Biol. 35, 203-208.   DOI
57 Wang, J. and Sampson, H. A. 2011. Food allergy. J. Clin. Invest. 121, 827-835.   DOI
58 Watson, J. L. and McKay, D. M. 2006. The immunophysiological impact of bacterial CpG DNA on the gut. Clin. Chim. Acta. 364, 1-11.   DOI
59 Isa, K., Oka, K., Beauchamp, N., Sato, M., Wada, K., Ohtani, K., Nakanishi, S., McCartney, E., Tanaka, M., Shimizu, T., Kamiya, S., Kruger, C. and Takahashi, M. 2016. Safety assessment of the Clostridium butyricum MIYAIRI $588{(R)}$ probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo. Hum. Exp. Toxicol. 35, 818-32.   DOI
60 Inoue, Y., Iwabuchi, N., Xiao, J. Z., Yaeshima, T. and Iwatsuki, K. 2009. Suppressive effects of Bifidobacterium breve strain M-16V on T-helper type 2 immune responses in a murine model. Biol. Pharm. Bull. 32, 760-763.   DOI
61 Kalliomäki, M., Kirjavainen, P., Eerola, E., Kero, P., Salminen, S. and Isolauri, E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107, 129-134.   DOI
62 Shimosato, T., Kitazawa, H., Katoh, S., Tohno, M., Iliev, I. D., Nagasawa, C., Kimura, T., Kawai, Y. and Saito, T. 2005. Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochem. Biophys. Res. Commun. 326, 782-787.   DOI
63 Schmidt, M., Anton, K., Nordhaus, C., Junghans, C. and Wittig, B. and Worm, M. 2006. Cytokine and Ig-production by CG-containing sequences with phosphorodiester backbone and dumbbell-shape. Allergy 61, 56-63.   DOI
64 Schwarz, K., Storni, T., Manolova, V., Didierlaurent, A., Sirard, J. C., Röthlisberger, P. and Bachmann, M. F. 2003. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur. J. Immunol. 33, 1465-1470.   DOI
65 Schwarzer, M., Srutkova, D., Schabussova, I., Hudcovic, T., Akgun, J., Wiedermann, U. and Kozakova, H. 2013. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 31, 5405-5412.   DOI
66 Zhang, H. and Gao, X. D. 2017. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater. Sci. Eng. C. Mater Biol. Appl. 70, 935-946.   DOI
67 Kanai, T., Mikami, Y. and Hayashi, A. 2015. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J. Gastroenterol. 50, 928-939.   DOI
68 Karlsson, H., Hessle, C. and Rudin, A. 2002. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect. Immun. 70, 6688-6696.   DOI
69 Kerckhoffs, A. P., Samsom, M., van der Rest, M. E., de Vogel, J., Knol, J., Ben-Amor, K. and Akkermans, L. M. 2009. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15, 2887-2892.   DOI
70 Shi, Y., Xu, L. Z., Peng, K., Wu, W., Wu, R., Liu, Z. Q., Yang, G., Geng, X. R., Liu, J., Liu, Z. G., Liu, Z. and Yang, P. C. 2015. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. Sci. Rep. 5, 17651.
71 Bjorksten, B. 2012. Treating childhood allergy with gut microbes: facts or fiction? Br. J. Dermatol. 166, 1-2.
72 Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411-420.   DOI
73 Ballester, M., Jeanbart, L., de Titta, A., Nembrini, C., Marsland, B. J., Hubbell, J. A. and Swartz, M. A. 2015. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Sci. Rep. 5, 14274.   DOI
74 Bercik, P., Collins, S. M. and Verdu, E. F. 2012. Microbes and the gut-brain axis. Neurogastroenterol. Motil. 24, 405-413.   DOI
75 Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L. and Gershwin, M. E. 2009. Probiotics and immunity. J. Gastroenterol. 44, 26-46.   DOI
76 Campbell, N. A., Reece, J. B., Mitchell, L. G. and Taylor, M. R. 2003. Biology concepts and connections. 5th edition:66.
77 Klinman, D. M. 2004. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249-258.   DOI
78 Kim, D. H., Sohn, J. H., Park, H. J., Lee, J. H., Park, J. W. and Choi, J. M. 2016. CpG Oligodeoxynucleotide inhibits cockroach-induced asthma via induction of IFN-${\gamma}^+$ Th1 cells or $Foxp3^+$ regulatory T cells in the lung. Allergy Asthma. Immunol. Res. 8, 264-75.   DOI
79 Kim, I. H., Park, M. S. and Ji, G. E. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte- like Caco-2 cells. J. Microbiol. Biotechnol. 13, 276-281.
80 Kitazawa, H., Watanabe, H., Shimosato, T., Kawai, Y., Itoh, T. and Saito, T. 2003. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int. J. Food Microbiol. 85, 11-21.   DOI
81 Konieczna, P., Groeger, D., Ziegler, M., Frei, R., Ferstl, R., Shanahan, F., Quigley E. M., Kiely, B., Akdis, C. A. and O'Mahony, L. 2012. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 61, 354-366.   DOI
82 Takahashi, N., Kitazawa, H., Shimosato, T., Iwabuchi, N., Xiao, J. Z., Iwatsuki, K., Kokubo, S. and Saito, T. 2006. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunol. Med. Microbiol. 46, 461-469.   DOI
83 Shin, J. H., Chung, M. J. and Seo, J. G. 2016. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of $CD4^+$ $Foxp3^+$ T cells. Food. Nutr. Res. 60, 32550   DOI
84 Singh, Y., Ahmad, J., Musarrat, J., Ehtesham, N. Z. and Hasnain, S. E. 2013. Emerging importance of holobionts in evolution and in probiotics. Gut Pathog. 5, 12.   DOI
85 Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L. and Mackay, C. R. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809-2824.   DOI
86 Tissier, H. 1906. Traitement des infections intestinales par la méthod de la flore bactérienne de línstein. Crit. Rev. Soc. Biol. 60, 359-361.
87 Tojo, R., Suarez, A., Clemente, M. G., de los Reyes-Gavilan, C. G., Margolles, A., Gueimonde, M. and Ruas-Madiedo, P. 2014. Intestinal microbiota in health nd disease: Role of Bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163-15176.   DOI
88 Collado, M. C., Isolauri, E., Laitinen, K. and Salminen, S. 2010. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92, 1023-1030.   DOI
89 Chen W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N. McGrady, G. and Wahl, S. M. 2003. Conversion of peripheral CD41CD252 naive T cells to CD41CD251 regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886.   DOI
90 Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M. and Sanz, Y. 2008. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 8, 232.   DOI
91 Cryan, J. F. and O'Mahony, S. M. 2011. The microbiomegut- brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187-192.   DOI