Browse > Article
http://dx.doi.org/10.12925/jkocs.2020.37.4.778

In vitro antibacterial activities of Pozzolan as a dietary silicate minerals supplementation to animals  

Kim, Chang-Hyun (School of Animal Life Convergence Science, Hankyong National University)
Um, Kyung-Hwan (College of Animal Life Sciences, Kangwon National University)
Park, Byung-Sung (College of Animal Life Sciences, Kangwon National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.37, no.4, 2020 , pp. 778-785 More about this Journal
Abstract
The purpose of this study was to investigate in vitro antibacterial activities of pozzolan against super bacteria and intestinal bacteria. There were four treatment groups: 1) CON, pozzolan free control group; 2) DP0.3, microbial culture medium prepared by mixing distilled water and 0.3% of pozzolan powder; 3) DP0.5, microbial culture medium prepared by mixing distilled water and 0.5% of pozzolan powder; and 4) PE, microbial culture medium prepared with pozzolan powder extracts without adding distilled water. The count of Lacctobacillus casei was significantly higher in the DP0.3 group compared to CON (P<0.05). However, it showed no significant difference compared to other treatment groups. Numbers of Clostridium butyricum, Escherichia coli, and Salmonella typhimurium were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). Clostridium butyricum and Salmonella typhimurium counts were significantly different among DP0.3, DP0.5, and PE groups (P<0.05). Counts of E. coli were also significantly between DP0.5 and PE groups (P<0.05). Counts of MRSA and VRE were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). MRSA counts were significantly different among DP0.5, DP0.3 and PE groups. VRE counts were significantly higher in the order of PE > DP0.3> DP0.5> CON (P<0.05). These results suggest that pozzolan could be used as a dietary silicate supplement and a natural antibacterial agent for livestock if its antimicrobial activity against super bacteria and harmful bacteria in the intestine is confirmed.
Keywords
Pozzolan; intestinal bacteria; super bacteria; antibacterial activity; MRSA; VRE;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Y. Jiang, A. Ma, S. Ramachandran, "Negative air ions and their effects on human health and air quality improvement", International Journal of Molecular Sciences, Vol.19, No.10 pp. 2966-2985, (2018).   DOI
2 C. Londono, H. E. Hartnett, L. B. Williams, "Antibacterial activity of aluminumin clay from the Colombian Amazon", Environmental Science & Technology, Vol.51, No.4. pp. 2401-2408. 2017.   DOI
3 D. A. Mosselhy, H. Granbohm, U. Hynonen, Y. Ge, A. Palva, K. Nordstrom, S. P. Hannula, "Nanosilver-silica composite: Prolonged antibacterial effects and bacterial interaction mechanisms for wound dressings", Nanomaterials (Basel), Vol.7, No.9 pp. 261-280. 2017.   DOI
4 D. Dobrzynski, A. Boguszewska-Czubara, K. Sugimori, "Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland)", Environmental Geochemistry and Health, Vol.40, pp. 1355-1375, (2018).   DOI
5 R. Jugdaohsingh, M. R. Calomme, K. Robinson, F. Nielsen, S. H. C. Anderson, P. D'Haese, P. Geusens, N. Loveridge, R. P. H. Thompson, J. J. Powell, "Increased longitudinal growth in rats on a silicon-depleted diet", Bone, Vol. 43, No.3 pp. 596-606, (2008).   DOI
6 Z. Chen, J. Wang, J. Li, Y. Zhu, M. Ge, "Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber", Journal of Engineered Fibers and Fabrics. Vol.12, No.1 pp. 59-65, (2017).
7 D. E. Camporotondi, M. L. Foglia, G. S. Alvarez, A. M. Mebert, L. E. Diaz, T. Coradin, M. F. Desimone, "Antimicrobial properties of silica modified nanoparticles", Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2 Formatex Research Center, pp. 283-290, (2013).
8 S. O. Park, J. H. Shin, W. K. Choi, B. S. Park, A. Jang, "Antibacterial activity of house fly-maggot extracts against MRSA (Methicillin-resistant Staphylococcus aureus) and VRE (Vancomycin-resistant enterococci)", Jouranal of Environmental Biology, Vol.31, No.5 pp. 865-871, (2010).
9 J. S. Lee, M. H. Lee, J. N. Lee, "Antioxidant and antimicrobial activities of Psidium guajava leaf extract", Journal of Korean Applied Science and Technology, Vol.37, No.1 pp. 56-65, (2020).
10 Z. X. Tang, B. F. Lv, "MgO nanoparticles as antibacterial agent: preparation and activity", Brazilian Journal of Chemical Engineering, Vol.31, No.03 pp. 591-601, (2014).   DOI
11 J. S. Eum, "Antimicrobial activity of medicinal plants extracts against Streptococcus sobrinus KCOM 1157", Journal of Korean Applied Science and Technology, Vol.37, No.2 pp. 279-286, (2020).
12 D. A. Jana, "A new look to an old pozzolan: Clinoptilolite-A promising pozzolan in concrete", Proceedings of the twenty-ninth conference on cement microscopy Quebec city, PQ, Canada, May 20-24, (2007).
13 M. Rescigno, "Gut commensal flora: tolerance and homeostasis", F1000 Biology Reports, Vol.1, No.9 pp.1-6, (2009).   DOI
14 J. S. Frick, I. B. Autenrieth, "The gut microflora and its variety of roles in health and disease". In: Dobrindt U., Hacker J., Svanborg C. (eds) Between Pathogenicity and Commensalism, Current Topics in Microbiology and Immunology, Vol.358, Springer, Berlin, Heidelberg, (2012).
15 S. E. Haydel, C. M. Remenih, L. B. Williams, "Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibioticresistant bacterial pathogens", Journal of Antimicrobial Chemotherapy, Vol.61, No.2 pp. 353-361, (2007).   DOI
16 L. B. Williams, M. Holland, D. D. Eberl, "Killer clays! Natural antibacterial clay minerals", Mineralogical Society Bulletin, Vol. 139, No.139 pp. 3-8, (2004).
17 K. H. Lee, K. T. Choi, B. S. Park, S. O. Park, "Composition of animal feed additive comprising pozzolan and use thereof", PCT/KR2015/003416 events, (2015).
18 E. R. Sanders, Aseptic laboratory techniques: Plating methods. 63, e3064. Doi: 10.3791/3064. 2012.
19 H. J. M. Bowen, "Environmental chemistry of the elements", Academic Press, London, (1979).
20 N. Cobirzan, A. A. Balog, E. Mosonyi, "Investigation of the natural pozzolans for usage in cement industry", Procedia Technology, Vol. 19, pp. 506-511, https://doi.org/10.1016/j.protcy.2015.02.072, (2015).   DOI
21 C. Mu, W. Zhu, "Antibiotic effects on gut microbiota, metabolism, and beyond", Applied Microbiology and Biotechnology, Vol.103, pp. 9277-9285, (2009).
22 R. Holl, M. Kling, E. Schrol, "Metallogenesis of germanium-A review", Ore Geology Reviews, Vol.30, No.3 pp. 145-180, (2007).   DOI
23 A. Sturz, M. Itoh, S. Smith, "Mineralogy and chemical composition of clay minerals, TAG hydrothermal mound", Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 158, pp. 277-284, (1998).
24 K. S. Hyun, Y. J. Kim, "Characteristics of intermediate THM and bromic reaction by chlorination", Korean Society of Water Science and Technology, Vol.14, No.1 pp. 97-104, (2006).
25 A. Abdullah, M. S. Jaafar, Y. H. Taufiq-Yap, A. Alhozaimy, A. Al- Negheimish, J. Noorzaei, "The effect of various chemical activators on pozzolanic reactivity: A review", Scientific Research and Essays, Vol.7, No.7 pp. 719-729, (2012).
26 J. Dyer, "Infrared functional textiles", In N. Pan & G. Sun (Eds.), Functional Textiles for Improved Performance, Protection and Health, pp. 184-197, Philadelphia: Woodhead Publishing Limited, (2011).
27 S. R. Tsal, M. R. Hamblln, "Biological effects and medical applications of infrared radiation", Journal of Photochemical Photobiology B, Vol.170, pp. 197-207, (2017).   DOI
28 L. Li, T. Ruan, Y. Lyu, B. Wu, "Advances in effect of germanium or germanium compounds on animals-a review", Journal of Biosciences and Medicines, Vol.5, No.7 pp. 56-73, (2017).   DOI
29 T. J. Chen, C. H. Lin, "Germanium: Environmental pollution and health effects", Encyclopedia of Environmental Health, pp. 927-933, DOI:10.1016/B978-0-444-52272-6. 00477-3, (2011).
30 H. G. Sun, X. M. Lu, P. J. Gao, "The exploration of the antibacterial mechanism of $Fe^{3+}$ against bacteria", Brazilan Journal of Microbiology, Vol.42, No.1 pp. 410-414, (2011).   DOI