• Title/Summary/Keyword: Closed Loop Feedback

Search Result 509, Processing Time 0.028 seconds

Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach (고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

Exponential Stability of Predictor Feedback for Discrete-Time Linear Systems with Input Delays (입력 지연을 갖는 이산시간 선형 시스템을 위한 예측기 피드백의 지수적 안정성)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.583-586
    • /
    • 2013
  • We consider discrete-time LTI (Linear Time-Invariant) systems with constant input delays. The input delay is modeled by a first-order PdE (Partial difference Equation) and a backstepping transformation is employed to design a predictor feedback controller. The backstepping approach results in the construction of an explicit Lyapunov function, with which we prove the exponential stability of the closed-loop system formed by the predictor feedback. The numerical example demonstrates the design of the predictor feedback controller, and illustrates the validity of the exponential stability.

A New Stabilization Method for a Class of Interconnected Systems By Using Local State Feedback (상태궤환을 이용한 상호 결합된 시스템의 새로운 비집중 안정화 방법)

  • Chae, Seog;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1498-1506
    • /
    • 1989
  • A new stabilization scheme is proposed in which the local state feedback is utilized in each decentralized controller for large-scale interconnected systems. In the proposed scheme, the controller is designed in two steps. First, the feedback gain of each decentralized controller is temporarily chosen so that the eigenvalues of each isolated subsystem are placed at the desired locations in the complex plane. Secondly, the feedback gain of each controller is compensated so that the time derivative of the Lyapunov function candidate for the overall closed-loop system should be negative. A sufficient condition which assures the global system to stable is given.

  • PDF

Reduced-order Controller Design using Projective Controls (투영제어 기법을 이용한 제어기의 저차수화 설계)

  • Sang-Woo Nam
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF

Implementation of Feedback Control System in Profibus-DP (Profibus-DP에서의 Feedback 제어시스템 구축)

  • Kang, Song;Lee, Kyung-Chang;Lee, Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.58-58
    • /
    • 2000
  • As many sensors and actuators are used in various automated systems, the application of network system to real-time distributed control is gaining acceptance in many industries. In order to take advantages of the network technique. however, network implementation should be carefully designed to satisfy real-time constraints and to consider network delays. This paper presents the implementation of feedback control system in Profibus-DP. Profibus-DP is a type of fieldbus protocols that are specifically designed to interconnect simple devices with fast I/O data exchange. As feedback control in profibus-DP is implemented, Network delays is found with influence of system performance. We analyze network delays in Profibus-DP into 3 reasons - dead time in Profibus interface, protocol delay, delay by asynchronization. In order to compensate the network delays, we introduce control algorithms with time delay concept. The results show that network delay can be compensated.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems via State Feedback (상태 피드백에 의한 쌍일차 계통의 강인 $H_{\infty}$ 제어)

  • Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2037-2039
    • /
    • 2002
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties via state feedback. The suitable robustly stabilizing feedback control law can be constructed in term of solution to a state variable x-dependent quadratic Riccati equation using successive approximation technique. Also, the state feedback control law robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop bilinear system with parameter uncertainties and exogenous disturbance.

  • PDF

Analysis and Design of the State Feedback Current Controller's Gain (상태 궤환 전류 제어기의 이득 분석 및 설계)

  • Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.982-983
    • /
    • 2006
  • This paper deals with an analysis and design of the state feedback current controller's gain in the three-phase current control systems. First, this paper derives the transfer function of the closed loop current control system and also compares the state feedback current controller with the conventional proportional integral controller. A new pole placement method by using the pole/zero cancellation method is proposed to give a simple and concrete concept with respect to the pole selection. Experimental results on the permanent magnet synchronous motor show that the proposed method is very useful to design the gain of the state feedback current controller.

  • PDF

Dynamic Output-Feedback Receding Horizon H$_{\infty}$ Controller Design

  • Jeong, Seung-Cheol;Moon, Jeong-Hye;Park, Poo-Gyeon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.475-484
    • /
    • 2004
  • In this paper, we present a dynamic output-feedback receding horizon $H_{\infty}$controller for linear discrete-time systems with disturbance. The controller is obtained numerically from the finite horizon output-feedback $H_{\infty}$optimization problem, which is, in fact, hardly solved analytically. Under a matrix inequality condition on the terminal weighting matrix, the monotonic decreasing property of the cost is shown. This property guarantees both the closed-loop stability and the $H_{\infty}$norm bound. Then, we extend the proposed design method to a reference tracking problem and a problem for time-varying systems. Numerical examples are given to illustrate the performance of the proposed controller.

Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer (고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어)

  • Yoon, Mun Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.