• Title/Summary/Keyword: Class-D audio amplifier

Search Result 19, Processing Time 0.024 seconds

Modeling and Analysis of Class D Audio Amplifiers using Control Theories (제어이론을 이용한 D급 디지털 오디오 증폭기의 모델링과 해석)

  • Ryu, Tae-Ha;Ryu, Ji-Yeol;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.385-391
    • /
    • 2007
  • A class D digital audio amplifier with small size, low cost, and high quality is positively necessary in the multimedia era. Since the digital audio amplifier is based on the PWM signal processing, it is improper to analyze the principle of signal generation using linear system theories. In this paper, a class D digital audio amplifier based ADSM (Advanced Delta-Sigma Modulation) is considered. We first model the digital audio amplifier and then explain the operation principle using variable structure control algorithm. Moreover, the ripple signal generated by the hysteresis in the comparator has a significant effect on the system performance. Thus, we present a method to find the magnitude and the frequency of the ripple signal using describing function. Finally, simulations and experiments are provided to show the validity of the proposed methods.

Implementation of Ceramic Flat speaker with a D Class Audio Amplifier (D 클래스 오디오 앰프의 세라믹 평판스피커 구현)

  • Yang, Won-Woo;Lee, Sun-Bok;Song, Young-Jun;Lee, Je-Hoon;Hong, You-Sik;Ahn, Jae-Hyeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.56-61
    • /
    • 2011
  • A class-D audio amplifier is widely used in coil speaker. This paper presented the technique for applying a class-D audio amplifier to the ceramic flat speaker. This technique can be achieved by employing a matching transmitter in order to replace class-G amplifier that is drven by voltage level to class-D amplifier employing power driving method. Consequently, the presented technique can improve the efficiency by making the voltage driving level a litter larger. We evaluate the sound-level efficiency using the various mediums such as wood, plastic, and paper. From the simulation results, the proposed technique employing a class-D audio amplifier rather than a class-G one showed a 10% improvement. The proposed system can be applicable for the mobile appliances as an external slim speaker.

Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators

  • Kang, Minchul;Kim, Hyungchul;Gu, Jehyeon;Lim, Wonseob;Ham, Junghyun;Jung, Hearyun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • This paper presents a high-efficiency digital class-D audio amplifier using a composite interpolation filter for portable audio devices. The proposed audio amplifier is composed of an interpolation filter, a delta-sigma modulator, and a class-D output stage. To reduce power consumption, the designed interpolation filter has an optimized composite structure that uses a direct-form symmetric and Lagrange FIR filters. Compared to the filters with homogeneous structures, the hardware cost and complexity are reduced by about half by the optimization. The coefficients of the digital delta-sigma modulator are also optimized for low power consumption. The class-D output stage has gate driver circuits to reduce shoot-through current. The implemented class-D audio amplifier exhibited a high efficiency of 87.8 % with an output power of 57 mW at a load impedance of $16{\Omega}$ and a power supply voltage of 1.8 V. An outstanding signal-to-noise ratio of 90 dB and a total harmonic distortion plus noise of 0.03 % are achieved for a single-tone input signal with a frequency of 1 kHz.

Design of -60dB THD, 32ohm Load, 0.7Vrms Output Low Power CMOS class AB Stereo Audio Amplifier (-60dB THD, 32ohm load, 0.7Vrms 출력의 저전력 CMOS class AB Stereo Audio Amplifier 설계)

  • Kim, Ji-Hoon;Park, Sang-Hune;Park, Hong-June;Kim, Tae-Ho;Jung, Sun-Yeop
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.905-908
    • /
    • 2005
  • 본 논문에서는 class AB opamp 를 채용한 384kHz differential PWM 신호를 입력으로 하는 2-channel stereo audio amplifier 블록을 공급전압 3.3V 조건에서 SMIC 0.18um thick oxide 기술을 이용하여 설계한다. 여기서 class AB opamp 는 공정 변화에 따른 quiescent current가 변하는 것을 최소화하기 위하여 adaptive load 를 사용하며, 전체적으로는 3 차 Butterworth lowpass filter 와 differential-to-single converter 로 구성된 2 개의 audio amplifier 와 출력전압이 ${\frac{1}{2}}Vdd$ 인 common output 블록으로 구성된다. 이러한 설계를 통하여 32ohm 의 저항 load 를 구동할 수 있는 -60dB THD, 전체 quiescent current 2mA 대인 CMOS class AB stereo audio amplifier 를 구현하였다.

  • PDF

ZVT-PWM Amplifier for Audio Applications (소프트 스위칭 기술을 이용한 오디오용 파워앰프)

  • Seo, D.H.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2145-2147
    • /
    • 1998
  • This paper presents a Class-D type switched mode audio power amplifier employing ZVT(Zero-Voltage-Transition) soft switching technique. In order to obtain a wide bandwidth and lower distortion for an audio amplifier a high switching frequency is essential. The ZVT switching scheme enables a high frequency switching without sacrificing the efficiency much as in a hard switching. A prototype amplifier is built to demonstrate the feasibility of this technique for the audio power amplifier.

  • PDF

Method for Current-Driving of the Loudspeakers with Class D Audio Power Amplifiers Using Input Signal Pre-Compensation (입력 신호의 전치 보상을 이용한 D 급 음향 전력 증폭기의 스피커 전류 구동 방법)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1068-1075
    • /
    • 2018
  • We propose a method for driving loudspeakers from class D audio power amplifiers in current mode, instead of in conventional voltage mode, which was impossible with the feedback circuitry. Unlike analog audio amplifiers, Class D audio power amplifiers have signal delay between the input and output signals, which makes it difficult to apply the feedback circuitry for current-mode driving. The idea of the pre-distortion scheme used for the compensation of the non-linearity of RF power amplifiers is adapted to remedy the impedance variation effect of the loudspeakers for current driving. The method uses the speaker model for the pre-distorter to compensate for the speaker impedance variation with frequency. The simulation and test results confirms the validity of the proposed method.

Interpolated Digital Delta-Sigma Modulator for Audio D/A Converter (오디오 D/A 컨버터를 위한 인터폴레이티드 디지털 델타-시그마 변조기)

  • Noh, Jinho;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.149-156
    • /
    • 2012
  • A digital input class-D audio amplifier is presented for digital hearing aid. The class-D audio amplifier is composed of digital and analog circuits. The analog circuit converts a digital input to a analog audio signal (DAC) with noise suppression in the audio band. An interpolated digital delta-sigma modulator is used to convert data types between digital signal processor (DSP) and digital-to-analog converter (DAC). An 16-bit, 25-kbps pulse code modulated (PCM) input is interpolated to 16-bit, 50-kbps by a digital filter. The output signal of interpolation filter is noise-shaped by a third-order digital sigma-delta modulator (SDM). As a result, 1.5-bit, 3.2-Mbps signal is applied to simple digital to analog converter.

A Stereo Audio DAC with Asymmetric PWM Power Amplifier (비대칭 펄스 폭 변조 파워-앰프를 갖는 스테레오 오디오 디지털-아날로그 변환기)

  • Lee, Yong-Hee;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.44-51
    • /
    • 2008
  • A stereo audio digital-to-analog converter (DAC) with a power amplifier using asymmetric pulse-width modulation (PWM) is presented. To adopt class-D amplifier mainly used in high-power audio appliances for head-phones application, this work analyzes the noise caused by the inter-channel interference during the integration and optimizes the design of the sigma-delta modulator to decrease the performance degradation caused by the noise. The asymmetric PWM is implemented to reduce switching noise and power loss generated from the power amplifier. This proposed architecture is fabricated in 0.13-mm CMOS technology. The proposed audio DAC including the power amplifier with single-ended output achieves a dynamic range (DR) of 95-dB dissipating 4.4-mW.

Stability of Digital Audio Amplifier and Analysis on the Effect of Hysteresis (디지털 오디오 앰프의 안정성과 히스테리시스에 의한 영향 해석)

  • Doh, Tae-Yong;Jang, Byung-Tak;Ryoo, Tae-Ha;Ryoo, Ji-Yeol;Park, Hwan-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.605-607
    • /
    • 2004
  • A class D digital audio amplifier with small size, low cost, and high quality is positively necessary in the multimedia era made of home theater system and the digital audio broadcasting (DAB). It is impossible to analyze the stability of the digital audio amplifier, which is based on the PWM signal processing. To solve this problem, the digital audio amplifier is analyzed using variable structure control theory which is one of nonlinear system theories. Moreover, the magnitude and the frequency of ripple signal, which generated by hysteresis in the comparator, is obtained using describing function which is useful to represent the input-output relation of nonlinear system.

  • PDF

A Class-D Amplifier for a Digital Hearing Aid with 0.015% Total Harmonic Distortion Plus Noise

  • Lee, Dongjun;Noh, Jinho;Lee, Jisoo;Choi, Yongjae;Yoo, Changsik
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.819-826
    • /
    • 2013
  • A class-D audio amplifier for a digital hearing aid is described. The class-D amplifier operates with a pulse-code modulated (PCM) digital input and consists of an interpolation filter, a digital sigma-delta modulator (SDM), and an analog SDM, along with an H-bridge power switch. The noise of the power switch is suppressed by feeding it back to the input of the analog SDM. The interpolation filter removes the unwanted image tones of the PCM input, improving the linearity and power efficiency. The class-D amplifier is implemented in a 0.13-${\mu}m$ CMOS process. The maximum output power delivered to the receiver (speaker) is 1.19 mW. The measured total harmonic distortion plus noise is 0.015%, and the dynamic range is 86.0 dB. The class-D amplifier consumes 304 ${\mu}W$ from a 1.2-V power supply.