• Title/Summary/Keyword: Citrus peel extract

Search Result 68, Processing Time 0.028 seconds

Chemical profile and antioxidant activity of peel of Yellowball, a novel citrus variety

  • Sun Lee;Seong-Ho Jo;Ji-Hyun An;Seong-man Jeong;Dong-Shin Kim;Sang Suk Kim;Suk Man Park;Su Hyun Yun;Seung-Gab Han;Hyun-Jin Kim
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.235-246
    • /
    • 2023
  • Yellowball (Citrus hybrid cv. Yellowball ) is a new citrus hybrid between Haruka (C. tamurana × natsudaidai ) and Kiyomi (C. unshiu × sinensis) and is known to possess strong antioxidant activity. However, detailed information on the antioxidant components of its peel has not yet been reported. This study evaluated the antioxidant activity of the peel and identified the antioxidant components by fractionating a methanolic extract of Yellowball peels using liquid-liquid extraction with n-hexane, ethyl ether (ether), ethyl acetate (EA), butanol, and water. The phenolic contents and antioxidant activities of the n-hexane, ether, and EA fractions were higher than those of the other fractions, and these fractions were further separated by semi-preparative high-performance liquid chromatography (HPLC). Four antioxidant peaks, EA1, EA2, EA3, and He1, were isolated and analyzed using ultra-performance liquid chromatography-quadrupole-time- of-flight mass spectrometry (UPLC-Q-TOF MS). Sinapoyl glucoside and hesperidin were identified in EA2 and EA3, respectively, and a polymethoxylated flavone (PMF) complex (5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, natsudaidain, tetrameth- oxyflavone, and tangeretin) was identified in He1. A compound in EA1 with m/z 223.0246 [M-H] could not be identified and was named unknown2. The antioxidant activity of unknown2 (IC50=69.17 ㎍/mL) was similar to that of Trolox, which was noted as a major antioxidant in Yellowball peel. Further studies on the antioxidant capacity of Yellowball peel are required; however, these results provide a foundation for using Yellowball peel as an antioxidant.

The Antioxidative and Antibrowning Effects of Citrus Peel Extracts on Fresh-cut Apples (Citrus 과피 추출물의 항산화 및 사과 슬라이스에 대한 항갈변 효과)

  • Park, Miji;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.598-604
    • /
    • 2013
  • This study was designed to evaluate the usability of the following citrus peel extracts (CPEs): Citrus sinensis (orange), C. unshiu (mandarin orange), C. limon (lemon), and C. paradise (grapefruit) as natural antibrowning agents. Overall, 0.1% of the CPEs were effective in reducing the browning of apple slices. The appearance of apple slices dipped in C. limon peel extracts (LPE) were found to be excellent and their Hunter L and ${\Delta}E$ values were similar to the values obtained when apple slices were dipped in ascorbic acid. The pH values of the different CPEs were not significantly different from each other, but were higher than that of ascorbic acid. LPE was found to possess the highest total phenolic content, flavonoid content, DPPH radical scavenging activity, and copper ($Cu^{2+}$) chelating activity. All these results suggest that citrus peel extracts, especially lemon peel extract, can be used as natural antibrowning agents.

Effects of Jeju Citrus unshiu Peel Extracts Before and After Bioconversion with Cytolase on Anti-Inflammatory Activity in RAW264.7 Cells (면역세포에서 Bioconversion 전후 제주 감귤 과피 추출물의 항염증 효과)

  • Seo, Jieun;Lim, Heejin;Chang, Yun-Hee;Park, Hye-Ryeon;Han, Bok-Kyung;Jeong, Jung-Ky;Choi, Kyoung-Sook;Park, Su-Beom;Choi, Hyuk-Joon;Hwang, Jinah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.331-337
    • /
    • 2015
  • Citrus and its peels, which are by-products from juice and/or jam processing, have long been used in Asian folk medicine. Citrus peels show an abundant variety of flavanones, and these flavanones have glycone and aglycone forms. Aglycones are more potent than glycones with a variety of physiological functions since aglycone absorption is more efficient than glycones. Bioconversion with cytolase converted narirutin and naringin into naringenin and hesperidin into hesperetin. Therefore, this study aimed to investigate the anti-oxidant and anti-inflammatory effects of bioconversion of Citrus unshiu (CU) peel extracts with cytolase (CU-C) in RAW264.7 cells. HPLC chromatograms showed that CU and CU-C had 23.42% and 29.39% total flavonoids, respectively. There was substantial bioconversion of narirutin to naringenin and of hesperidin to hesperetin. All citrus peel extracts showed DPPH scavenging activities in a dose-dependent manner, and CU-C was more potent than intact CU. RAW264.7 cells were pre-treated with $0{\sim}500{\mu}g/mL$ of citrus peel extracts for 4 h and then stimulated by $1{\mu}g/mL$ of lipopolysaccharide (LPS) for 8 h. All citrus peel extracts showed decreased mRNA levels and protein expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Especially, CU-C markedly inhibited mRNA and protein expression of iNOS and COX-2 compared to intact citrus peel extracts. All citrus peel extracts showed decreased NO production by iNOS activity. This result suggests that bioconversion of citrus peel extracts with cytolase may provide potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by boosting the anti-inflammatory effects of citrus peels.

Antibacterial Effects of Extracts from Citrus Peels (귤피 추출물의 항균효과)

  • Choi, Bo-Ram;Kang, Jaeku;Kang, Kyung-Hee
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.559-564
    • /
    • 2012
  • It has been reported that dried orange peel in a medicine prepared from crude drugs has antioxidant, anti-inflammatory, anti-allergic, anti-bacterial, and anti-viral functions, prevents circulatory diseases, reduces lipids, improves immunity, and strengthens capillary vessels. This study attempted to identify the antibacterial effects of dried orange peel extract on S. mutans causing dental caries, and its effects on GTase activation. The extract was put on the medium at the concentration of 5, 10 and 20 mg/ml and its effects on the inhibition of S. mutans growth were examined. Analysis found that the higher the concentration was, the more the number of colonies was reduced. In accordance with the measurement after 8 hours, the extract displayed a high growth inhibition rate: 92% at a concentration of 5 mg/ml, 95% at a concentration of 10 mg/ml and 99% at a concentration of 20 mg/ml. Furthermore, the GTase deactivation rate by the extract was measured. The higher the concentration of extract was, the more rapidly the deactivation rate increased. The deactivation rate of the extract was significant at 42% at a concentration of 5mg/ml.

Protective effect of Citrus unshiu peel on the cadmium-induced apoptosis in HepG2 cells (카드뮴으로 유발한 간세포 자멸사에서 진피의 보호효과)

  • Noh, Gyu Pyo;Byun, Sung Hui;Lee, Jong Rok;Park, Sook Jahr;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • Objective : Citrus unshiu peel (Citri Unshius Pericarpium) has been prescribed to suppress coughing and phlegm in Korean medicine. In this study, the effect of ethanol extract of Citrus unshiu peel (CEE) on apoptosis was investigated using cadmium chloride (CdCl2) treated HepG2 cells. Methods : CEE was prepared by extracting 300 g of Citri Unshius Pericarpium in 3 L of ethanol for 72 h. Apoptosis was determined by the TUNEL assay. The mitochondrial membrane potential (MMP) was monitored using the membrane-permeable fluorescent dye Rh123. The expression level of each protein was monitored by Western blot analysis. Results : CEE protected HepG2 cells from apoptosis as determined by the TUNEL assay. A decrease in MMP was observed in cells exposed to cadmium, indicating that mitochondria are involved in the induction of apoptosis. However, CEE recovered the reduction in MMP caused by cadmium. In addition, decreased expression of B-cell lymphoma 2 (Bcl-2), procaspase, and poly(ADP-ribose) polymerase (PARP) by cadmium was increased by CEE. The anti-apoptotic effect of CEE was found to be associated with inhibition of JNK and p38 phosphorylation when examining the expression of phosphorylated MAPK by Western blot. Conclusion : This study showed that CEE exerted anti-apoptotic effects in cadmium-induced HepG2 cells by inhibiting the reduction of MMP and changes in the expression level of apoptotic proteins. These results suggest the potential for CEE to be used for heavy metal-induced liver damage.

Antioxidant Activity of Citrus Peel and Effect on its Glucose Metabolism in L6 Rat Skeletal Muscle Cells (진피(陳皮)의 항산화 활성 및 L6 근육세포에서 당대사에 미치는 영향)

  • Kim, Soo Hyun;Park, Hae-Jin;Kim, Kyeong Jo;Kim, Min Ju;Lee, Jin A;Lee, Ah Reum;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.101-108
    • /
    • 2018
  • Objectives : This study aimed to effects antioxidant activity of citrus peel extract (CPE) and effect on its glucose metabolism in L6 rat skeletal muscle cells. Methods : Antioxidative activities were evaluated by using 10 kinds of natural materials, and total polyphenol and flavonoid contents were examined. The L6 muscle cells toxicity of CPE was examined by MTT assay. Expression of glucose-related genes in L6 muscle cells by CPE treatment was analyzed by real-time PCR and western blotting. Results : The $IC_{50}$ values of DPPH and ABTS free radical scavenging activity of CPE were ($15.47{\pm}0.26{\mu}g/m{\ell}$ and $12.07{\pm}1.23{\mu}g/m{\ell}$, respectively), effectively clearing DPPH and ABTS. CPE showed total polyphenol and flavonoid contents ($20.30{\pm}0.38$ and $64.20{\pm}0.52$, respectively). The selected CPE were used in experiments using an effective concentration that is not toxic in L6 muscle cells. We investigated insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase regulatory (PI3KR), Akt, and glucose transporter 4 (GLUT4). mRNA analysis by realtime PCR showed no significant difference, but CPE-treated cells showed a tendency to increase in concentration-dependent manner. However, analysis of protein expression of Akt and GLUT4 by western blotting showed that CPE treatment significantly increased concentration dependent (p<0.001). Conclusions : As a result, citrus peel extract with high antioxidant activity regulates glucose metabolism in L6 muscle cells. Therefore, CPE can be a potential treatment for the treatment of diabetes.

Improving Effects on Rats with Reflux Esophagitis Treated with Combined Extract of Young persimmon fruit and Citrus peel (떫은감 진피 복합추출물의 급성 역류성 식도염 개선 효과)

  • Kwon, OJun;Lee, AhReum;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Objectives : The present study was conducted to evaluate protective effects of Combined Extract of young persimmon fruit and citrus peel (PCM) in Reflux Esophagitis(RE) rats.Methods : Twenty-four Sprague-Dawley (SD) rats were divided four groups and each group had six rats ; Normal group, RE control group, RE group treated PCM 50 ,100 mg/kg body weight group. Reflux esophagitis was induced that tied the pylorus and fundus in SD rats stomach. PCM was administered at 50, 100 mg/kg body weight 2 hrs prior to induction of RE. After 6 hrs, the effects of PCM treated rats were compared with those of normal and control rats. We have performed an analysis such as pH of stomach secretion, oxidative stress biomarkers in serum, and western blot.Results : The increased esophageal mucosa damage by RE was markedly improved by PCM treatment in a dose-dependent manner. Also, the administration of PCM decreased the elevated serum reactive oxygen species (ROS) and peroxynitrite (ONOO-) in serum. The protein expressions of anti oxidant such as SOD, catalase, GPx exhibited down-regulation by PCM treatment in tissues. And, PCM effectively reduce inflammatory cytokines such as inflammation-related proteins cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) in RE rats. In addition, NFκB and p-IκBɑ were decreased in PCM-adiministrated RE rats. But there was no difference on stomach secretion pH between reflux esophagitis rats and PCM administration rat group.Conclusions : In conclusion, administration of PCM (50, 100 mg/kg body weight) made esophagus have less inflammation and injury by decreased NFκB path way. These findings suggest that PCM could have Improving effects on reflux esophagitis.

In Vitro Effect of Yuza (Citrus junos SIEB ex TANAKA) Extracts on Proliferation of Human Prostate Cancer Cells and Antioxidant Activity (In vitro 상에서 유자(Citrus junos SIEB ex TANAKA) 용매 추출물의 암세포 억제효과 및 항산화성)

  • Yoo, Kyung-Mi;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.339-344
    • /
    • 2004
  • Effects of 18 kinds of yuza extracts on viability of prostate cancer cells, DU 145 and LN-CaP, were investigated. Chloroform and methanolic extracts of yuza peel exhibited moderate cytotoxicity against both cancer cell lines dose-dependently and also showed antioxidant activity matching on inhibition of cell viability (author's intension not clear). Chloroform extract of yuza peel exhibited highest radical-scavenging activity and cytotoxicity against prostate cancer cells in vitro.

Isolation of Citrus Peel Flavonoid Bioconversion Microorganism and Inhibitory Effect on the Oxidative Damage in Pancreatic Beta Cells (진피 플라보노이드 생물전환 균주 분리 및 췌장 베타세포에 대한 산화적 손상 억제 효과)

  • Park, Chi-Deok;Jung, Hee-Kyung;Park, Chang-Ho;Jung, Yoo-Seok;Hong, Joo-Heon;Ko, Hee-Sun;Kang, Dong-Hee;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • In this study, the optimum conditions of fermentation were determined by isolating the microorganisms with the ability to bioconvert the Citrus peel flavonoid, and the effect of the fermented Citrus peel extract which was bioconverted on the oxidative damage of HIT-T15 cell was investigated. The Aureobasidium pullulans Y-12 was isolated and identified with the strains having bioconversion activity. The fermentation conditions for bioconversion activity were confirmed to be optimal when culturing for three days at $25^{\circ}C$, 150 rpm in a culture medium containing 5% Citrus peel power and 0.8% casitone. As a result of bioconversion, 32.8 mg/g and 21.5 mg/g of naringenin and hesperetin, which were aglycone flavones, were produced respectively. Also in the flavonoid content, it was confirmed that FCP produced 154.8 mg/g while CP produced 33.7 mg/g, thus producing more by approximately 4.6 times. As a result of treating FCP and CP after inducing the oxidative damage for HIT-T15 cell by treating the deoxy-D-ribose with $IC_{50}$ (38 mM) concentration, the surviving rate was recovered to 90% for FCP treatments in the 0.01 mg/mL concentration and for CP treatments in the 0.025 mg/mL concentration. Also in the insulin secretion rate, FCP treatments increased by 206% and CP treatments by 132% when treated in the 0.1 mg/mL concentration. As the bioconverted FCP can inhibit the oxidative damage of HIT-T15 cell in the low concentration, it was considered its usability as the functional material for prevention of the type 2 diabetes.

Screening for Cytotoxicity of Crude Extracts from Fruit on Leukaemia Cells in Citrus and Related Genera

  • Soo
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.213-220
    • /
    • 1997
  • The present study has been undertaken to characterize availability of citrus as a medicinal plant with antineoplastic property. The crude extracts from 40 species of fruits with 12 species of the local Citrus in Cheju island were evaluated on their potential activities against mouse P388 lymphocytic leukaemia in vitro. The percent cytotoxicity varied from 25.40 to 97.94% at a concentration of $100{\mu}g/mL$. Among 40 spp., 8 species showed high toxicity more than 90% against P388 cells and Cheongkyool(C. nippokoreana) exhibited the most cytotoxicity as 97.94%($IC_{50}=20.2{\mu}g/mL$). Nine varieties of C. junos were showed insiginicant cytotoxicity. In trifoliate orange, immature fruit was stronger than mature and peel extract showed higher cytotoxicity($IC_{50}=18{\mu}g/mL$) than the other tissues. Hexane fraction from methanol(MeOH) extract of trifoliate orange showed highly significant inhibition of cell growth($IC_{50}=3.9{\mu}g/mL$). In addition, its cytotoxicity increased remarkably from 3.95 to $0.40{\mu}g/mL$ as exposure time legthened. Cytotoxic activities of crude extracts were decreased considerably during a six months storage period. It was apparent that there is considerable variation in cytotoxicity, depending upon species, maturity and storage time of extracts. There was no meaningful cytotoxic difference between archicitrus and metacitrus in the genus Citrus.

  • PDF