Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.1.067

Isolation of Citrus Peel Flavonoid Bioconversion Microorganism and Inhibitory Effect on the Oxidative Damage in Pancreatic Beta Cells  

Park, Chi-Deok (BioHealth Convergence center, Daegu Technopark)
Jung, Hee-Kyung (BioHealth Convergence center, Daegu Technopark)
Park, Chang-Ho (BioHealth Convergence center, Daegu Technopark)
Jung, Yoo-Seok (BioHealth Convergence center, Daegu Technopark)
Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
Ko, Hee-Sun (Department of Microbiology, College of Natural Science, Keimyung University)
Kang, Dong-Hee (Department of Microbiology, College of Natural Science, Keimyung University)
Kim, Hyun-Soo (Department of Microbiology, College of Natural Science, Keimyung University)
Publication Information
KSBB Journal / v.27, no.1, 2012 , pp. 67-74 More about this Journal
Abstract
In this study, the optimum conditions of fermentation were determined by isolating the microorganisms with the ability to bioconvert the Citrus peel flavonoid, and the effect of the fermented Citrus peel extract which was bioconverted on the oxidative damage of HIT-T15 cell was investigated. The Aureobasidium pullulans Y-12 was isolated and identified with the strains having bioconversion activity. The fermentation conditions for bioconversion activity were confirmed to be optimal when culturing for three days at $25^{\circ}C$, 150 rpm in a culture medium containing 5% Citrus peel power and 0.8% casitone. As a result of bioconversion, 32.8 mg/g and 21.5 mg/g of naringenin and hesperetin, which were aglycone flavones, were produced respectively. Also in the flavonoid content, it was confirmed that FCP produced 154.8 mg/g while CP produced 33.7 mg/g, thus producing more by approximately 4.6 times. As a result of treating FCP and CP after inducing the oxidative damage for HIT-T15 cell by treating the deoxy-D-ribose with $IC_{50}$ (38 mM) concentration, the surviving rate was recovered to 90% for FCP treatments in the 0.01 mg/mL concentration and for CP treatments in the 0.025 mg/mL concentration. Also in the insulin secretion rate, FCP treatments increased by 206% and CP treatments by 132% when treated in the 0.1 mg/mL concentration. As the bioconverted FCP can inhibit the oxidative damage of HIT-T15 cell in the low concentration, it was considered its usability as the functional material for prevention of the type 2 diabetes.
Keywords
Citrus peel; Flavonoid; Bioconversion; Aureobasidium pullulans Y-12; HIT-T15;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Shimoda, K., N. Kubota, K. Taniuchi, D. Sato, N. Nakajima, H. Hamada, and H. Hamada (2010) Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells. Phytochemistry. 71: 201-205.   DOI
2 Youssef, F., T. Roukas, and C. G. Biliaderis (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 34: 355-366.   DOI
3 Lee, S. J., K. H. Ahn, C. S. Park, B. D. Yoon, and M. S. Kim (2009) Analysis of ${\beta}-(1{\rightarrow}3)(1{\rightarrow}6)$-Glucan Produced by Aureobasidium pullulans IMS-822. Kor. J. Microbiol. 45: 63-68.
4 Li, X. L., Z. Q. Zhang, J. F. D. Dean, K. E. L. Eriksson, and L. G. Ljungdahl (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl. Environ. Microbiol. 59: 3212-3218.
5 Debdulal, B. and B. Pati (2007) Optimization of tannase production by Aureobasidium pullulans DBS66. J. Microbiol. Biotechnol. 17: 1049-1053.
6 Koh, G. P., K. S. Suh, S. Chon, S. J. Oh, J. T. Woo, S. W. Kim, J. W. Kim, and Y. S. Kim (2005) Elevated cAMP level attenuates 2-deoxy-D-ribose-induced oxidative damage in pancreatic-cells. Arch. Biochem. Biophys. 438: 70-79.   DOI
7 Cha, J. Y. and Y. S. Cho (2001) Biofunctional activities of flavonoids. J. Korean Soc. Agric. Chem. Biotechnol. 44: 122-128.
8 Kang, S. H., Y. J. Lee, C. H. Lee, S. J. Kim, D. H. Lee, Y. K. Lee, and D. B. Park (2005) Physiological activities of peel of Jejuindigenous Citrus sunki Hort. Tanaka. Korean J. Food Sci. Technol. 37: 983-988.
9 Kim, J. L., C. R. Bae, and Y. S. Cha (2010) Helianthus tuberosus extract has anti-diabetes effects in HIT-T15 cells. J. Kor. Soc. Food Sci. Nutr. 39: 31-35.   DOI
10 Kanaze, F. I., M. I. Bounartzi, M. Georgarakis, and I. Niopas (2007) Pharmaco kinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr. 61: 472-477.   DOI
11 Song, E. Y., Y. H. Choi, K. H. Kang, and J. S. Koh (1998) Free sugar, organic acid, hesperidin, naringin and inorganic elements changes of Cheju fruits according to harvest date. Kor. J. Food Sci. Technol. 30: 306-312.
12 Rhyu, M. R., E. Y. Kim, I. Y. Bae, and Y. K. Park (2002) Contents of naringin, hesperidin and neohesperidin in premature Korean citrus fruits. Kor. J. Food Sci. Technol. 34: 132-135.
13 Leite, R. S. R., H. F. Alves-Prado, H. Cabral, F. C. Pagnocca, E. Gomes, and R. Silva (2008) Production and characteristics comparison of crude ${\beta}$-glucosidase produced by microorganisms Therm cscus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme and Microbial Technology. 43: 391-395.   DOI
14 Koh, G. P., J. T. Woo, D. H. Lee, S. J. Oh, S. W. Kim, J. W. Kim, Y. S. Kim, and D. B. Park (2007) Mechanism of 2-Deoxy-D-ribose-induced damage in pancreatic ${\beta}$-cells. J. Kor. Diabetes 31: 105-112.   DOI
15 Robertson R. P., J. Harmon, P. O. Tran, Y. Tanaka, and H. Takahashi (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581-587.   DOI   ScienceOn
16 Robertson, R. P. (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 279: 42351-42354.   DOI   ScienceOn
17 Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2011) Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J. Korean Soc. Appl. Biol. Chem. 54: 169-176.
18 Miyake, Y., K. Yamamoto, N. Tsujihara, and T. Osawa (1998) Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33: 689-695.   DOI   ScienceOn
19 Hyon, J. S., S. M. Kang, S. Mahinda, W. J. Koh, T. S. Yang, M. C. Oh, C. K. Oh, Y. J. Jeon, and S. H. Kim (2010) Antioxidative activities of extracts from dried Citrus sunki and C. unshiu peels. J. Kor. Soc. Food Sci. Nutr. 39: 1-7.   DOI
20 Kuhnan, J. (1976) The flavonoids, A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-191.
21 Erlund, I. (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24: 851-74.   DOI   ScienceOn
22 Hertog, M. G. L., E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342: 1007-1011.   DOI   ScienceOn
23 Garg, A., S. Garg, L. J. Zaneveld, and A. K. Singla (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15: 655-669.   DOI   ScienceOn
24 Garcia, B. O., J. Castillo, F. R. Marin, A. Ortuno, and J. A. Del Rio (1997) Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45: 4505-4515.   DOI   ScienceOn
25 Elisa, T., L. G. Maurizio, G. Santo, D. M. Danila, and G. Marco (2007) Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104: 466-479.   DOI   ScienceOn
26 Ameer, B., R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff (1995) Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60: 34-40.
27 Ross, J. A. and C. M. Kasum (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22: 19-34.   DOI   ScienceOn
28 Laura, B. (1998) Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333.
29 Son, H. S., H. S. Kim, T. B. Kwon, and J. S. Ju (1992) Isolation, purification and hypotensive effect of bioflavonoid in citrus sinensis. J. Kor. Soc. Food Nutr. 21: 136-142.
30 Korea Food & Drug Administration. (2005) The Korean Pharmacopeia. 8th ed., pp. 1455-1456. Shinil books, Seoul, Korea.
31 Nishikawa T, D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-90.   DOI   ScienceOn
32 Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2010) Effect of the ethanol extract from citrus peels on oxidative damage in alloxan-induced HIT-T15 cell. J. Kor. Soc. Food Sci. Nutr. 39: 1102-1106.   DOI
33 Du X. L., D. Edelstein, L. Rossetti, I. G. Fantus, H. Goldberg, F. Ziyadeh, J. Wu, and M. Brownlee (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 97: 12222-12226.   DOI   ScienceOn