• 제목/요약/키워드: Circular Plate Vibration

검색결과 130건 처리시간 0.032초

원판의 비선형 비대칭 강제진동응답 (Responses of Nonlinear Asymmetric Forced Vibrations of a Circular Plate)

  • 여명환;이원경
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.65-70
    • /
    • 2001
  • An investigation into asymmetric vibrations of a clamped circular place under a harmonic excitation is made. We examine a primary resonance. in which the frequency of excitation is near the natural frequency of an asymmetric mode of the plate. We found not only a response haying the form of standing wave but also one having the form of traveling wave, which was not observed by Sridhar, Mook and ${Nayfeh}^{(1)}$

  • PDF

원판 덮개를 갖는 고정-자유 원통셸의 고유진동 해석 (Free Vibration Analysis of Clamped-Free Circular Cylindrical Shells with Circular Plate at Top)

  • 임정식;이영신
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.801-818
    • /
    • 1996
  • Free vibration analyses of circular cylindrical shells attached with plate structures for the symmetric boundary condition such as simply-simply supported shells by receptance method are found in literatures. However analyses of those shells with unsymmetric boundary condition as clamped free boundary are hardly found. Here frequency equation of the clamped free circular cylindrical shell with end plate is derived using receptance method and natural frequencies of the combined system were calculated. The frequencies and mode shapes obtained from present method are compared with those of ANSYS to show the validity of the method. Natural frequencies and mode component ratios of clamped-free cylindrical shell are obtained by employing Rayleigh-Ritz method on energy equations, and they are used in receptance calculation. Results show good agreement with those of ANSYS analyses.

  • PDF

시간평균 홀로그래픽 간섭계를 이용한 경계조건의 변화에 따른 원형평판의 진동에 관한 연구 (The Research on the Vibration of the Circular Plate for Varying Free Arc Angles by Time-Average Holographic Interferometry)

  • 이기백;양장식;나종문
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1900-1907
    • /
    • 1992
  • 본 연구에서는 원형평판의 경계조건을 일부분은 고정단으로 일부분은 자유단 으로 구성하여 자유단각 .alpha.(Fig.4 참조)를 0˚, 30˚, 60˚, 90˚, 120˚, 150˚, 180˚로 변화시킴에 따른 진동모드를 시간평균 홀로그래픽 간섭계(time-average holographic interferometry)를 이용해 분석하고 자유단의 변화에 따른 고유진동수의 비를 비교하였고, 레이저 도플러 유속계(LDV)를 변형한 레이저 도플러 진동계(laser doppler vibrometer)로 원형평판의 진동변위와 시간평균 홀로그래픽 간섭계로 구한 진 동변위를 비교하였다.

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

가변두께를 가지는 원판의 진동해석에 관한 연구 (Vibration Analysis of Circular Plate with Continuously Varying Thickness)

  • 신영재;전수주;윤종학;유영찬
    • 한국강구조학회 논문집
    • /
    • 제18권1호
    • /
    • pp.1-10
    • /
    • 2006
  • 본 논문은 원형 판의 진동 해석에 미분변환법을 적용하였다. 계산된 수치적인 결과들은 이전의 연구결과들과 비교되었다. 그 결과를 기존의 연구 결과와 비교하여 미분변환법의 타당성을 검증하였고, 두께 형상과 경계조건 및 내경변화에 의한 고유진동수의 변화를 해석 및 고찰하였다. 유용성을 입증하였다.

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

축방향력에 의한 축 플레이트계의 방사소음에 관한 연구 (A Study on the Radiated Noise of a Shaft-Plate System By an Axial Force)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.524-529
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

갇힌 유체로 연성된 두 원판의 고유진동 해석 (Natural Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid)

  • 정명조;정경훈
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.439-453
    • /
    • 2001
  • This study deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequencies sis also investigated.

  • PDF

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.