Browse > Article
http://dx.doi.org/10.12989/sss.2019.23.5.429

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads  

Amir, Saeed (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Arshid, Ehsan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Arani, Mohammad Reza Ghorbanpour (Electrical Engineering Department, Amirkabir University of Technology)
Publication Information
Smart Structures and Systems / v.23, no.5, 2019 , pp. 429-447 More about this Journal
Abstract
The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.
Keywords
free vibration; modified couple stress theory; porous material; carbon nanotubes reinforced composites; circular sandwich plate; pasternak foundation;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Duc, N.D., Dinh Nguyen, P. and Dinh Khoa, N. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013.   DOI
2 Ghorbanpour Arani, A., BabaAkbar Zarei, H. and Haghparast, E. (2018), "Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally gradedpiezoelectric nanocomposite face sheets", J. Vib. Control, 107754631774750.
3 Ghorbanpour Arani, A., Roudbari, M.A. and Amir, S. (2016), "Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations", Appl. Math. Model., 40(3), 2025-2038. https://doi.org/10.1016/j.apm.2015.09.055   DOI
4 Ghorbanpour Arani, A., Shajari, A., Amir, S. and Atabakhshian, V. (2013a), "Nonlinear fluid-induced vibration and instability of an embedded piezoelectric polymeric microtube using nonlocal elasticity theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(12), 2870-2885.   DOI
5 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.   DOI
6 Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A - Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.   DOI
7 Duc, N.D, Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functional graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259.
8 Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.   DOI
9 Duc, N.D. (2014), "Nonlinear static and dynamic stability of functionally graded plates and shells", Vietnam National University Press.
10 Ghorbanpour Arani, A., Shirali, A., Farahani, M.N., Amir, S. and Loghman, A. (2013b), "Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(1), 137-145.   DOI
11 Ghorbanpour Arani, A. and Zamani, M.H. (2017), "Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation", J. Sandw. Struct. Mater., 1099636217721405.
12 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56.   DOI
13 Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low-Dimens. Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.   DOI
14 Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019a), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006   DOI
15 Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040.   DOI
16 Wu, T., Wang, Y. and Liu, G. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Method. Appl. M., 191(46), 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2.   DOI
17 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. andHouari, M. S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.   DOI
18 Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019b), "A novel sizedependent quasi-3D isogeometric beam model for twodirectional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.   DOI
19 Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Threedimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method", Int. J. Solids Struct., 40(12), 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8.   DOI
20 Zhou, Z.H., Wong, K.W., Xu, X.S. and Leung, A.Y.T. (2011), "Natural vibration of circular and annular thin plates by Hamiltonian approach", J. Sound Vib., 330(5), 1005-1017. https://doi.org/10.1016/j.jsv.2010.09.015.   DOI
21 Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C. and Rodrigues, J.D. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343.   DOI
22 Duc, N.D. (2018), "Nonlinear thermo- electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.   DOI
23 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mechanica Sinica, 30(4), 516-525.   DOI
24 Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.   DOI
25 Duc, N.D. and Quan, T.Q. (2015), "Nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with temperature-dependent properties on elastic foundation", J. Vib. Control, 21(7), 1340-1362.   DOI
26 Ebrahimi, F., Jafari, A. and Barati, M.R. (2017a), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002.   DOI
27 Ebrahimi, F., Daman, M. and Jafari, A. (2017b), "Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment", Smart Struct. Syst., 20(6), 709-728. https://doi.org/10.12989/sss.2017.20.6.709.   DOI
28 Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.   DOI
29 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
30 Eringen, A.C. (2002), Nonlocal continuum field theories. Springer Science & Business Media.
31 Kolahdouzan, F., Gorbanpour Arani, A. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRCmicro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273.   DOI
32 Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), "Bending, buckling and vibration of size-dependent functionally graded annular microplates", Compos. Struct., 94(11), 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037.   DOI
33 Khorshidvand, A.R., Joubaneh, E.F., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression", Acta Mechanica, 225(1), 179-193.   DOI
34 Kiran, M.C. and Kattimani, S.C. (2018), "Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate", Smart Struct. Syst., 21(4), 493-519. https://doi.org/10.12989/sss.2018.21.4.493.   DOI
35 Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. - A- Solids, 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004   DOI
36 Leclaire, P., Horoshenkov, K.V., Swift, M.J. and Hothersall, D.C. (2001), "The vibrational response of a clamped rectangular porous plate", J. Sound Vib., 247(1), 19-31. https://doi.org/10.1006/jsvi.2000.3657.   DOI
37 Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003.   DOI
38 Leissa, A.W. (1969), Vibration of plates. Ohio State Univ. Columbus.
39 Ashrafi, B., Hubert, P. and Vengallatore, S. (2006), "Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems", Nanotechnology, 17(19), 4895.   DOI
40 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.   DOI
41 Barati, M.R., Shahverdi, H. and Zenkour, A.M. (2017), "Electromechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory", Mech. Adv. Mater. Struct., 24(12), 987-998. https://doi.org/10.1080/15376494.2016.1196799.   DOI
42 Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28.   DOI
43 Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31(2), 194-198. doi:10.1115/1.3629586.   DOI
44 Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911.
45 Bui, T.Q., Do, T. Van, Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos.Part B: Eng., 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048.   DOI
46 Liu, S., Yu, T., Lich, L. Van, Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.   DOI
47 Liew, K.M., Han, J.B., Xiao, Z.M. and Du, H. (1996), "Differential quadrature method for Mindlin plates on Winkler foundations", Int. J. Mech. Sci., 38(4), 405-421. https://doi.org/10.1016/0020-7403(95)00062-3.   DOI
48 Liu, S., Yu, T., Bui, T.Q. and Xia, S. (2017a), "Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory", Compos. Struct., 172, 34-44. https://doi.org/10.1016/j.compstruct.2017.03.067.   DOI
49 Liu, S., Yu, T. and Bui, T.Q. (2017b), "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis", Eur. J. Mech. - A - Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008.   DOI
50 Liu, S., Yu, T., Van Lich, L., Yin, S. and Bui, T.Q. (2018), "Size effect on cracked functional composite micro-plates by an XIGA-based effective approach", Meccanica, 53(10), 2637-2658.   DOI
51 Loghman, A. and Cheraghbak, A. (2018), "Agglomeration effects on electro-magneto-thermo elastic behavior of nano-composite piezoelectric cylinder", Polymer Compos., 39(5), 1594-1603. https://doi.org/10.1002/pc.24104.   DOI
52 Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.   DOI
53 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Comput. Mech., 48(2), 175-193.   DOI
54 Chakraverty, S., Bhat, R.B. and Stiharu, I. (2001), "Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method", J. Sound Vib., 241, 524-539. doi: 10.1006/jsvi.2000.3243.   DOI
55 Loghman, A., Ghorbanpour Arani, A. and Mosallaie Barzoki, A. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.   DOI
56 Malekzadeh, P. and Zarei, A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016.   DOI
57 Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025   DOI
58 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.   DOI
59 Detournay, E. and Cheng, A.H.D. (1995), "Fundamentals of poroelasticity", Anal. Design Methods, 1993, 113-171. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.
60 Abdel-Rahman, E.M., Younis, M.I. and Nayfeh, A.H. (2002), "Characterization of the mechanical behavior of an electrically actuated microbeam", J. Micromech. Microeng., 12(6), 759.   DOI
61 Amir, S. (2016), "Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420716670929.
62 Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., 142, 45-56. https://doi.org/10.1016/j.compstruct.2015.12.071.   DOI
63 Mechab, I., Mechab, B., Benaissa, S., Serier, B. andBouiadjra, B. B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38(8), 2193-2211.   DOI
64 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stresses, 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.   DOI
65 Meirovitch, L. (1997), Principles and techniques of vibrations (Vol. 1). Prentice Hall New Jersey.
66 Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048.   DOI
67 Pham, T. Van and Duc, N.D. (2016), "Nonlinear stability analysis of imperfect three-phase sandwich laminated polymer nanocomposite panels resting on elastic foundations in thermal environments", VNU J. Sci.: Math. Phys., 32(1), 20-36.
68 Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metalceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056.   DOI
69 Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018a). "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 109963621879538.
70 Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.   DOI
71 Reddy, J.N. and Berry, J. (2012), "Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress", Compos. Struct., 94(12), 3664-3668. https://doi.org/10.1016/j.compstruct.2012.04.019.   DOI
72 Arshid, E., Kiani, A. and Amir, S. (2019), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.
73 Amir, S., Bidgoli, E.M.R. and Arshid, E. (2018b), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1487612.
74 Arani, A.G., Haghparast, E., Maraghi, Z.K. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B: Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036   DOI
75 Arefi, M., Bidgoli, E.M.R. and Zenkour, A.M. (2018), "Sizedependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", Smart Struct. Syst., 22(1), 27-40. https://doi.org/10.12989/sss.2018.22.1.027.   DOI
76 Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.   DOI
77 Reddy, J.N. and Khdeir, A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817. https://doi.org/10.2514/3.10338.   DOI
78 Reddy, J., Wang, C. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech. -A - Solids, 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4.   DOI
79 Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos.Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.   DOI
80 Arshid, E. and Khorshidvand, A.R. (2017), "Flexural vibrations analysis of saturated porous circular plates using differential auadrature method", Iranian J. Mech. Eng. T. - ISME, 19(1), 78-100.
81 Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Probl. Eng,, 2013, 1-12. http://dx.doi.org/10.1155/2013/964367.
82 Ghorbanpour-Arani, A. and Zamani, M.H. (2018), "Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arabian J. Sci. Eng., 43(9), 4675-4688.   DOI
83 Shu, C. (2012), Differential quadrature and its application in engineering. Springer Science & Business Media.
84 Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method. Appl. M., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.   DOI
85 Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Science, 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.   DOI
86 Sidhoum, I.A., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart Struc. Syst., 22(3), 303-314. https://doi.org/10.12989/gae.2017.12.1.009   DOI
87 Theodorakopoulos, D.D. and Beskos, D.E. (1994), "Flexural vibrations of poroelastic plates", Acta Mechanica, 103(1-4), 191-203.   DOI