• Title/Summary/Keyword: Chromosomal

Search Result 1,173, Processing Time 0.026 seconds

Mechanism of Metronidazole Resistance Regulated by the fdxA Gene in Helicobacter pylori. (헬리코박터 파일로리에서 fdxA 유전자에 의한 메트로니다졸 내성 조절 기전 연구)

  • Nam, Won-Hee;Lee, Sun-Mi;Kim, Eun-Sil;Kim, Jin-Ho;Jeong, Jin-Yong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.723-727
    • /
    • 2007
  • Resistance to metronidazole in Helicobacter pylori results from inactivation of rdxA and frxA, the chromosomal genes for a nitroreductase that normally converts metronidazole from prodrug to bactericidal agent. Two types of metronidazole susceptible strains had been found distinguishable by their apparent levels of frxA expression. Most common in the populations we had studied were strains that required only rdxA inactivation to become resistant to moderate levels of metronidazole(type I strains). The second strain type required inactivation of both frxA and rdxA to become resistance to metronidazole(type II strains): this was linked to a relatively high level of frxA gene transcription in the type II strains. The fdxA gene regulated fdxA as well as rdxA gene. Thus, to study the function of fdxA as a regulatory gene we constructed a null mutant of fdxA in H. pylori genome and identified over-and under-expressed proteins by fdxA using two-dimensional(2-D) electrophoresis and MALDI-TOP-MS. There were four over-expressed proteins in fdxA mutant; nifU-like protein(HP0221), frxA(HP0642), nonheme ferritin(HP0653), and hypothetical protein(HP0902). Three under-expressed proteins were also identified in fdxA mutant, including 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (HP0089), (3R)-hydroxymyristoyl ACP dehydratase(HP1376), and thioredoxin(HP1458).

Molecular Sex Determination Using Sexual Dimorphisms between ZFX and ZFY Genes in Korean Hares(Lepus coreanus Thomas) (한국멧토끼 ZFX와 ZFY 유전자의 성별 이형성과 분자 성판별)

  • Han, Sang-Hyun;Cho, In-Cheol;Lee, Sung-Soo;Oh, Moon-You;Oh, Hong-Shik
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.402-406
    • /
    • 2007
  • This study was performed to develop the molecular marker for sex determination of hare (Lepus coreanus) distributed in Korea which focused on sexual dimorphism between X and Y chromosomal homologous genes, zinc finger-X (ZFX) and -Y (ZFY). The intron 7 regions of ZFX and ZFY genes exhibited differential amplification patterns between male and female hares. The lengths of intron 7 region of ZFX and ZFY genes were 538 and 233-bp, respectively. Especially, the ZFX intron 7 contained a repetitive sequence identified as member of RNA-mediated transposable elements which was similar to CSINE2 commonly found in the rabbit genome. However, it was not present in intron 7 of ZFY gene. The molecular sex typing by polymerase chain reaction (PCR) was also carried out to determine the sex of hare based on difference in lengths between the intron 7 regions of ZFX and ZFY genes. All DNA samples tested had common band amplified from ZFX. However, the male hare DNAs had two distinct bands which amplified from ZFX and ZFY genes, respectively. The results from ZFX-ZFY PCR sex typing were identical to those from phenotypic investigation and from amplification patterns using male-specific sex determining region Y (SRY) gene as well. Finally, this study suggested that the sexual dimorphism between intron 7 regions of ZFX and ZFY could be useful genetic marker to determine sex of hare.

Tetracycline and Erythromycin Resistant Mutants of the Mycoplasma pneumoniae Isolated from Patients with Respiratory Diseases (호흡기질환 환자로부터 분리된 Mycoplasma pneumoniae의 tetracycline과 erythromycin에 대한 저항성 변이)

  • Chang Myung-Woong;Park In-Dal;Kim Kwang-Hyuk;Song Gap-Young;Kim Sung-Won
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.863-870
    • /
    • 2005
  • One hundred and twenty three strains of Mycoplasma pneumoniae were isolated from patients with respiratory diseases from February 2002 to April 2005 in Busan, Korea. The MICs of tetracycline and erythromycin up to $90\%$ of the 123 M. pneumoniae isolates tested were $0.5\~1.0$, and $0.5\~512{\mu}/ml$, respectively. Plasmid DNA was not isolated from all of the M. pneumoniae isolates. Out of 323 strains of M. pneumoniae, 57 ($46.3\%$) stains contain tetM gene on their chromosomal DNA, and 60 ($48.8\%$) strains were mutated in domain V of 23S rRNA for erythromycin resistance. Out of 63 strains of M. pneumoniae which were not mutated in domain V of 235 rRNA for erythromycin resistance, 36 ($57.1\%$) strains contained tetM gene, and out of 60 strains of M. pneumoniae which were mutated in domain V of 23S rRNA for erythromycin resistance, 21 ($35.0\%$) strains contained tetM gene. These results suggest that the isolation rate of erythromycin and tetracycline resistant M. pneumoniae is higher than those of other countries, and erythromycin and tetracycline are not first choice drug for M. pneumoniae infection in Korea, and it need confirm by a nationwide surveilance of antimicrobial resistance.

Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight

  • Lee, Myoungsook;Kwon, Dae Young;Kim, Myung-Sunny;Choi, Chong Ran;Park, Mi-Young;Kim, Ae-jung
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This is the first study to identify common genetic factors associated with the basal metabolic rate (BMR) and body mass index (BMI) in obese Korean women including overweight. This will be a basic study for future research of obese gene-BMR interaction. SUBJECTS/METHODS: The experimental design was 2 by 2 with variables of BMR and BMI. A genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) was conducted in the overweight and obesity (BMI > $23kg/m^2$) compared to the normality, and in women with low BMR (< 1426.3 kcal/day) compared to high BMR. A total of 140 SNPs reached formal genome-wide statistical significance in this study (P < $1{\times}10^{-4}$). Surveys to estimate energy intake using 24-h recall method for three days and questionnaires for family history, a medical examination, and physical activities were conducted. RESULTS: We found that two NRG3 gene SNPs in the 10q23.1 chromosomal region were highly associated with BMR (rs10786764; $P=8.0{\times}10^{-7}$, rs1040675; $2.3{\times}10^{-6}$) and BMI (rs10786764; $P=2.5{\times}10^{-5}$, rs10786764; $6.57{\times}10^{-5}$). The other genes related to BMI (HSD52, TMA16, MARCH1, NRG1, NRXN3, and STK4) yielded P < $10{\times}10^{-4}$. Five new loci associated with BMR and BMI, including NRG3, OR8U8, BCL2L2-PABPN1, PABPN1, and SLC22A17 were identified in obese Korean women (P < $1{\times}10^{-4}$). In the questionnaire investigation, significant differences were found in the number of starvation periods per week, family history of stomach cancer, coffee intake, and trial of weight control in each group. CONCLUSION: We discovered several common BMR- and BMI-related genes using GWAS. Although most of these newly established loci were not previously associated with obesity, they may provide new insights into body weight regulation. Our findings of five common genes associated with BMR and BMI in Koreans will serve as a reference for replication and validation of future studies on the metabolic rate.

Analysis of Quinolone Resistance Determinants in Escherichia coli Isolated from Clinical Specimens and Livestock Feces (임상검체와 가축으로부터 분리된 대장균을 대상으로 Quinolone계 항균제 내성인자 분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.422-430
    • /
    • 2018
  • The inappropriate and widespread use of quinolones in humans and animals may cause accelerated emergence and spread of antimicrobial-resistant determinants. In this study, we investigated quinolone resistance mechanisms in a total of 65 nalidixic acid-resistant E. coli isolated from swine rectal swabs (N=40) and clinical specimens (N=25). Antimicrobial susceptibilities were determined by the disk diffusion method. PCR and DNA sequencing were performed for investigations of genes and mutations associated with quinolone resistance. In our study, 62 of 65 nalidixic acid-resistant E. coli harbored mutations in gyrA, parC, and/or parE genes; of the 65 isolates, 62 (95.4%) had mutations in the gyrA gene, 35 (53.8%) had mutations in the parC gene, 7 (10.8%) had mutations in the parE gene. The 35 isolates harbored mutations in two genes, gyrA and parC. Plasmid-mediated quinolone resistance (PMQR) determinants were investigated in the 65 isolates. Thirteen of 65 nalidixic acid-resistant E. coli contained the qnrS gene and 10 of those isolates had mutations in the gyrA, parC, and/or parE genes. We confirmed that an important mechanism of quinolone resistance in E. coli isolated from human and swine involves chromosomal mutations in the gyrA, parC, and/or parE genes with increasing use of quinolone for treatment or additives.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.

The first Korean case with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing

  • Choi, Eun Mi;Lee, Dong Hyun;Kang, Seok Jin;Shim, Ye Jee;Kim, Heung Sik;Kim, Joon Sik;Jeong, Jong In;Ha, Jung-Sook;Jang, Ja-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.12
    • /
    • pp.403-406
    • /
    • 2018
  • Floating-Harbor syndrome is a rare autosomal dominant genetic disorder associated with SRCAP mutation. To date, approximately 50 cases of Floating-Harbor syndrome have been reported, but none have been reported in Korea yet. Floating-Harbor syndrome is characterized by delayed bony maturation, unique facial features, and language impairment. Here, we present a 6-year-old boy with a triangular face, deep-set protruding eyes, low-set ears, wide nose with narrow nasal bridge, short philtrum, long thin lips, clinodactyly, and developmental delay that was transferred to our pediatric clinic for genetic evaluation. He showed progressive delay in the area of language and cognition-adaption as he grew. He had previously undergone chromosomal analysis at another hospital due to his language delay, but his karyotype was normal. We performed targeted exome sequencing, considering several syndromes with similar phenotypes. Library preparation was performed with the TruSight One sequencing panel, which enriches the sample for about 4,800 genes of clinical relevance. Massively parallel sequencing was conducted with NextSeq. An identified variant was confirmed by Sanger sequencing of the patient and his parents. Finally, the patient was confirmed as the first Korean case of Floating-Harbor syndrome with a novel SRCAP (Snf2 related CREBBP activator protein) mutation (c.7732dupT, p.Ser2578Phefs*6), resulting in early termination of the protein; it was not found in either of his healthy parents or a control population. To our knowledge, this is the first study to describe a boy with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing in Korea.

Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli (Ciprofloxacin 내성 대장균에서 Sequence Type과 Fluoroquinolone 내성의 분석)

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.217-224
    • /
    • 2021
  • Fluoroquinolone (FQ) resistant gram-negative pathogens have emerged worldwide, and the recent increase in FQ resistant Escherichia coli is of great concern in Korea. This study investigated FQ resistance determinants and the epidemiological relationship of 56 ciprofloxacin-resistant E. coli isolated from a tertiary hospital in Daejeon, South Korea from June to December 2018. Molecular epidemiology was investigated by multilocus sequence typing (MLST). Polymerase chain reaction (PCR) and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC, and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance (PMQR) genes: aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS. MLST analysis showed 12 sequence types (STs) and the most prevalent ST was ST131 (31/56, 55.4%), followed by ST1193 (13/56, 23.2%), and ST405 (3/56, 5.4%). In 56 ciprofloxacin-resistant E. coli isolates, Ser83→Leu and Asp87→Asn in gyrA and Ser80→Ile and Glu84→Val in parC (51.8%, 29/56) were the most frequent amino acid substitutions and aac(6)-Ib-cr (33.9%, 19/56) was the most common PMQR gene. These results of FQ resistance determinants were more frequently observed in ST131 compared with other clones. Continuous monitoring of the epidemiological characteristics of ciprofloxacin-resistant E. coli isolates and further investigation of FQ resistance determinants are necessary.

The antioxidant icariin protects porcine oocytes from age-related damage in vitro

  • Yoon, Jae-Wook;Lee, Seung-Eun;Park, Yun-Gwi;Kim, Won-Jae;Park, Hyo-Jin;Park, Chan-Oh;Kim, So-Hee;Oh, Seung-Hwan;Lee, Do-Geon;Pyeon, Da-Bin;Kim, Eun-Young;Park, Se-Pill
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.546-557
    • /
    • 2021
  • Objective: If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. Methods: We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. Results: Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. Conclusion: ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.