Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04029

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa  

He, Qiuning (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Feng, Zhibin (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Wang, Yanhua (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Wang, Kewen (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Zhang, Kailu (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Kai, Le (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Hao, Xiuying (Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences)
Yu, Zhifen (The Affiliated Hospital of Ludong University)
Chen, Lijuan (The Affiliated Hospital of Ludong University)
Ge, Yihe (Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.8, 2019 , pp. 1299-1309 More about this Journal
Abstract
As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.
Keywords
Pseudomonas aeruginosa; RpoS; LasR; phz1; phz2; phenazine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Whiteley M, Greenberg EP. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183: 5529-5534.   DOI
2 McGrath S, Wade DS, Pesci EC. 2004. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230: 27-34.   DOI
3 McKnight SL, Iglewski BH, Pesci EC. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182: 2702-2708.   DOI
4 Soto-Aceves MP, Cocotl-Yanez M, Merino E, Castillo-Juarez I, Cortes-Lopez H, Gonzalez-Pedrajo B, et al. 2019. Inactivation of the quorum-sensing transcriptional regulators LasR or RhlR does not suppress the expression of virulence factors and the virulence of Pseudomonas aeruginosa PAO1. Microbiology 165: 425-432.   DOI
5 Schuster M, Hawkins AC, Harwood CS, Greenberg EP. 2004. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol. 51: 973-985.   DOI
6 Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181: 3890-3897.   DOI
7 Sambrook J, Russell DW. 2001. Molecular cloning: A Laboratory Manual, Third ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY.
8 Chieda Y, Iiyama K, Yasunaga-Aoki C, Lee JM. 2005. Pathogenicity of gacA mutant of Pseudomonas aeruginosa PAO1 in the silkworm, Bombyx mori. FEMS Microbiol. Lett. 244: 181-186.   DOI
9 Chen WP, Kuo TT. 1993. A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res. 21: 2260.   DOI
10 Smith AW, Iglewski BH. 1989. Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res. 17: 10509.   DOI
11 Minton NP. 1984. Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31(1-3): 269-273.   DOI
12 Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86.   DOI
13 Schweizer HD. 1993. Small broad-host-range gentamycin resistance cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15: 831-834.
14 Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, et al. 2018. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol. Res. 215: 55-64.   DOI
15 Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, et al. 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact. 13: 232-237.   DOI
16 Jude F, Kohler T, Branny P, Perron K, Mayer MP, Comte R, et al. 2003. Posttranscriptional control of quorum-sensingdependent virulence genes by DksA in Pseudomonas aeruginosa. J. Bacteriol. 185: 3558-3566.   DOI
17 Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172: 884-900.   DOI
18 Liang H, Li L, Dong Z, Surette MG, Duan K. 2008. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J. Bacteriol. 190: 6217-6227.   DOI
19 Cui Q, Lv H, Qi Z, Jiang B, Xiao B, Liu L, et al. 2016. Crossregulation between the phz1 and phz2 operons maintains a balanced level of phenazine biosynthesis in Pseudomonas aeruginosa PAO1. PLoS One 11: e0144447.   DOI
20 Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76: 46-65.   DOI
21 Konig B, Jaeger KE, Sage AE, Vasil ML, Konig W. 1996. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes). Infect. Immun. 64: 3252-3258.   DOI
22 Winzer K, Williams P. 2001. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int. J. Med. Microbiol. 291: 131-143.   DOI
23 Jayaseelan S, Ramaswamy D, Dharmaraj S. 2014. Pyocyanin: production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 30: 1159-1168.   DOI
24 Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454-6465.   DOI
25 Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. 2012. Phenazine content in the cystic cibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am. J. Respir. Cell. Mol. Biol. 47: 738-745.   DOI
26 Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 112: 4110-4115.   DOI
27 Burns JL, Ramsey BW, Smith AL. 1993. Clinical manifestations and treatment of pulmonary infections in cystic fibrosis. Adv. Pediatr. Infect. Dis. 8: 53-66.
28 Whiteley M, Parsek MR, Greenberg EP. 2000. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol. 182: 4356-4360.   DOI
29 Ge Y, Yang S, Fang Y, Yang R, Mou D, Cui J, et al. 2007. RpoS as an intermediate in RsmA-dependent regulation of secondary antifungal metabolites biosynthesis in Pseudomonas sp. M18. FEMS Microbiol. Lett. 268: 81-87.   DOI
30 Potvin E, Sanschagrin F, Levesque RC. 2008. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 32: 38-55.   DOI
31 Look DC, Stoll LL, Romig SA, Humlicek A, Britigan BE, Denning GM. 2005. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms. J. Immunol. 175: 4017-4023.   DOI
32 Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. 2009. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am. J. Pathol. 175: 2473-2488.   DOI
33 Denning GM, Iyer SS, Reszka KJ, O'Malley Y, Rasmussen GT, Britigan BE. 2003. Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 285: L584-592.   DOI
34 Hao Y, Kuang Z, Walling BE, Bhatia S, Sivaguru M, Chen Y, et al. 2012. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell. Microbiol. 14: 401-415.   DOI
35 Laursen JB Nielsen J. 2004. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104: 1663-1686.   DOI
36 Mavrodi DV, Blankenfeldt W, Thomashow LS. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44: 417-445.   DOI
37 Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, et al. 2011. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc. Natl. Acad. Sci. USA 108: 17378-17383.   DOI
38 Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P. 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50: 29-43.   DOI
39 Chugani S, Greenberg EP. 2010. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 107: 10673-10678.   DOI
40 Crousilles A, Maunders E, Bartlett S, Fan C, Ukor EF, Abdelhamid Y, et al. 2015. Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol. 10: 1825-1836.   DOI
41 Liu J, Hafting J, Critchley AT, Banskota AH, Prithiviraj B. 2013. Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl. Environ. Microbiol. 79: 7343-7350.   DOI
42 Raneri M, Pinatel E, Peano C, Rampioni G, Leoni L, Bianconi I, et al. 2018. Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models. Sci. Rep. 8: 16912.   DOI
43 Zhang Y, Hu Y, Yang B, Ma F, Lu P, Li L, et al. 2010. Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS One 5: e13527.   DOI
44 Hengge-Aronis R. 2002. Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 4: 341-346.
45 Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, et al. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17: 333-343.   DOI
46 Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum sensing circuit. J. Bacteriol. 188: 3365-3370.   DOI
47 Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65: 189-213.   DOI