DOI QR코드

DOI QR Code

Molecular Sex Determination Using Sexual Dimorphisms between ZFX and ZFY Genes in Korean Hares(Lepus coreanus Thomas)

한국멧토끼 ZFX와 ZFY 유전자의 성별 이형성과 분자 성판별

  • Han, Sang-Hyun (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Cho, In-Cheol (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Lee, Sung-Soo (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Oh, Moon-You (Department of Life Science, College of Natural Sciences, Cheju National Uniersity) ;
  • Oh, Hong-Shik (Department of Science Education, College of Education, Cheju National University)
  • 한상현 (농촌진흥청 난지농업연구소) ;
  • 조인철 (농촌진흥청 난지농업연구소) ;
  • 이성수 (농촌진흥청 난지농업연구소) ;
  • 오문유 (제주대학교 자연과학대학 생명과학과) ;
  • 오홍식 (제주대학교 사범대학 과학교육과)
  • Published : 2007.03.30

Abstract

This study was performed to develop the molecular marker for sex determination of hare (Lepus coreanus) distributed in Korea which focused on sexual dimorphism between X and Y chromosomal homologous genes, zinc finger-X (ZFX) and -Y (ZFY). The intron 7 regions of ZFX and ZFY genes exhibited differential amplification patterns between male and female hares. The lengths of intron 7 region of ZFX and ZFY genes were 538 and 233-bp, respectively. Especially, the ZFX intron 7 contained a repetitive sequence identified as member of RNA-mediated transposable elements which was similar to CSINE2 commonly found in the rabbit genome. However, it was not present in intron 7 of ZFY gene. The molecular sex typing by polymerase chain reaction (PCR) was also carried out to determine the sex of hare based on difference in lengths between the intron 7 regions of ZFX and ZFY genes. All DNA samples tested had common band amplified from ZFX. However, the male hare DNAs had two distinct bands which amplified from ZFX and ZFY genes, respectively. The results from ZFX-ZFY PCR sex typing were identical to those from phenotypic investigation and from amplification patterns using male-specific sex determining region Y (SRY) gene as well. Finally, this study suggested that the sexual dimorphism between intron 7 regions of ZFX and ZFY could be useful genetic marker to determine sex of hare.

우리나라에 분포하는 멧토끼 (Lepus coreanus)의 성판별을 위한 분자 표지자를 개발하기 위하여, X, Y 염색체간 상동인 ZFX와 ZFY 유전자들의 성별 이형성에 초점을 맞추어 본 연구를 수행하였다. ZFX와 ZFY 유전자의 인트론 7 영역은 멧토끼의 암수가 구분되는 증폭 양상을 나타내었다. 인트론 7의 길이는 각각 ZFX에서 538, ZFY에서 233-bp로 확인되었다. 특히, ZFX의 인트론 7에서는 RNA-매개성 전위인자 중 한 종이며 토끼의 유전체에서 빈번하게 관찰되는 CSINE2와 유사한 반복서열이 발견되었다. 반면, 반복서열은 ZFY의 인트론 7에서는 관찰되지 않았다. ZFX와 ZFY 유전자의 인트론 7에서 확인된 길이의 차이에 근거하여 중합효소연쇄반응 기법을 이용한 유전자 성판별을 수행하였다. 시험에 이용된 모든 DNA시료들은 ZFX에서 증폭된 공통의 밴드를 가지고 있었다. 이에 반해, 멧토끼 수컷 DNA들은 각각 ZFX와 ZFY에서 증폭된 두 개의 구분되는 밴드들을 나타내었다. ZFX-ZFY 유전자·성판별 결과는 표현형 성별 정보뿐만 아니라 수컷-특이적인 SRY 유전자의 증폭양상과도 일치한 결과와도 정확히 일치하였다. 이상의 결과들은 멧토끼에서 ZFX와 ZFY의 인트론 7 영역간의 성별 이형성은 유전자 성판별을 위한 유용한 유전자 표지자가 될 것으로 사료된다.

Keywords

References

  1. Anderson, G. B. 1987. Identification of embryonic sex detection of H-Y antigen. Theriogenology 27, 81-97 https://doi.org/10.1016/0093-691X(87)90072-0
  2. Barr, M. L. 1960. Sexual dimorphism interphase nuclei. Am. J. Hum. Genet. 12, 118-127
  3. Bello, N. and A. Sanchez. 1999. The identification of a sex-specific DNA marker in the ostrich using a random amplified polymorphic DNA (RAPD) assay. Mol. Ecol. 8, 667-669 https://doi.org/10.1046/j.1365-294x.1999.00549.x
  4. Birren, B., E. D. Green, S. Klapholz, R. M. Myers and J. Roskams. 1997. Genome analysis: A laboratory manual. Cold Spring Harbor Laboratory Press, USA
  5. Cho, I. C., S. Y. Kang, S. S. Lee, Y. L. Choi, M. S. Ko, M. Y. Oh and S. H. Han. 2005. Molecular sexing using SRY and ZF genes in pigs. Korean J. Anim. Sci. Technol. 47, 317-324 https://doi.org/10.5187/JAST.2005.47.3.317
  6. Gardner, R. L. and R. G. Edwards. 1968. Control of the sex ratio at full term in rabbit by transferring sexed blastocysts. Nature 218, 346-349 https://doi.org/10.1038/218346a0
  7. Gentles, A. J., O. Kohany and J. Jurka. 2005. Evolutionary diversity and potential recombinogenic role of integration targets of Non-LTR retrotransposons. Mol. Biol. Evol. 22, 1983-1991 https://doi.org/10.1093/molbev/msi188
  8. Geraldes, A., C. Rogel-Gaillard and N. Ferrand. 2005. High levels of nucleotide diversity in the European rabbit (Oryctolagus cuniculus) SRY gene. Anim. Genet. 36, 349-351 https://doi.org/10.1111/j.1365-2052.2005.01300.x
  9. Geraldes, A. and N. Ferrand. 2006. A 7-bp insertion in the 3' untranslated region suggests the duplication and concerted evolution of the rabbit SRY gene. Genet. Sel. Evol. 38, 313-320 https://doi.org/10.1186/1297-9686-38-3-313
  10. Horng, Y. M. and M. C. Huang. 2003. Male-specific DNA sequences in pigs. Theriogenology 59, 841-848 https://doi.org/10.1016/S0093-691X(02)01150-0
  11. Jurka. J. 2006. CSINE2: A large family of SINE elements from rabbit. Repbase Reports 6, 208
  12. Kim Y. K. 1994. A comparison of nutrient digestibility by wild Korean mountain hares (Lepus sinensis coreanus) and rabbits (Oryctolagus cuniculus). Korean J. Acnim. Sci. Technol. 36, 397-402
  13. King, W. A., T. Linares, I. Gustavesson and A. A. Bane. 1979. A method for preparation of chromosome from bovine zygotes and blastocytes. Vet. Sci. Commun. 3, 51-56 https://doi.org/10.1007/BF02268951
  14. Koh, H. S., T. Y. Chun, H. S. Yoo, Y. Zhang, J. Wang, M. Zhang and C. Wu. 2001. Mitochondrial cytochrome b gene sequence diversity in the Korean hare, Lepus coreanus Thomas (Mammalia, Lagomorpha). Biochem. Genet. 39, 417-429 https://doi.org/10.1023/A:1013815720609
  15. Lander, E. S., L. M. Linton and B. Birren. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  16. McCarty, A. S., G. Kleiger, D. Eisenberg and S. T. Smale. 2003. Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell 11, 459-470 https://doi.org/10.1016/S1097-2765(03)00043-1
  17. Medstrand, P., L. N. van de Lagemaat and D. L. Mager. 2002. Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res. 12, 1483-1495 https://doi.org/10.1101/gr.388902
  18. Melniczek, J. R., D. Dambach, U. Prociuk, P. F. Jezyk, P. S. Henthorn, D. F. Patterson and U. Giger. 1999. Sry-negative XX sex reversal in a family of Norwegian Elkhounds. J. Vet. Intern. Med. 13, 564-569 https://doi.org/10.1111/j.1939-1676.1999.tb02211.x
  19. Nagai, K. 2001. Molecular evolution of Sry and Sox gene. Gene 270, 161-169 https://doi.org/10.1016/S0378-1119(01)00479-6
  20. Poloumienko, A. 2004. Cloning and comparative analysis of the bovine, porcine, and equine sex chromosome genes ZFX and ZFY. Genome 47, 74-83 https://doi.org/10.1139/g03-099
  21. Pomp, D., B. A. Good, R. D. Geisert, C. J. Corbin and A. J. Conley. 1995. Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73, 1408-1415 https://doi.org/10.2527/1995.7351408x
  22. Quilter, C. R., S. C. Blott, A. J. Mileham, N. A. Affara, C. A. Sargent and D. K. Griffin, 2002. A mapping and evolutionary study of porcine sex chromosome genes. Mamm. Genome 13, 588-594 https://doi.org/10.1007/s00335-002-3026-1
  23. Sinclair, A. H., P. Berta, M. S. Palmer, J. R. Hawkins, B. L. Griffiths, M. J. Smith, J. W. Foster, A. -M. Frischauf, R. Lovell-Badge and P. N. Goodfellow. 1990. A gene from the human sex-determining region Y encodes a protein with a homology to a conserved DNA-binding motif. Nature 346, 240-244 https://doi.org/10.1038/346240a0
  24. Smit, A. F. 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 9, 657-663 https://doi.org/10.1016/S0959-437X(99)00031-3
  25. Staessen, C., E. van Assche, H. Joris, M. Bonduelle, M. Vandervorst, I. Liebaers and A. van Steirteghem. 1999. Clinical experience of sex determination by fluorescent in-situ hybridization for preimplantation genetic diagnosis. Mol. Hum. Reprod. 5, 382-389 https://doi.org/10.1093/molehr/5.4.382
  26. Thompson,J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  27. Tomomasa, H., Y. Adachi, M. Iwabuchi, Y. Tohyama, M. Yotsukura, S. Oshio, T. Yazaki, T. Umeda, T. Takano, Y. Yamanouchi and Y. Nakahori. 1999. XX-male syndrome bearing the sex-determining region Y. Arch. Androl. 42, 89-96 https://doi.org/10.1080/014850199262922
  28. Zenteno, J. C., S. Carranza-Lira, A. L. Jimenez and S. Kofrnan, 2003. A de novo phe67leu mutation in the SRY gene in a patient with complete 46,XY gonadal dysgenesis. J. Endocrinol. Invest. 26, 1117-1119 https://doi.org/10.1007/BF03345260