DOI QR코드

DOI QR Code

Ciprofloxacin 내성 대장균에서 Sequence Type과 Fluoroquinolone 내성의 분석

Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli

  • 조혜현 (대전과학기술대학교 임상병리과)
  • Cho, Hye Hyun (Departments of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
  • 투고 : 2021.07.07
  • 심사 : 2021.07.20
  • 발행 : 2021.09.30

초록

전 세계적으로 fluoroquinolone (FQ) 내성 그람음성균이 출현하고 있는 가운데, 최근 우리나라에서 FQ 내성 E. coli의 증가 추세는 심각한 우려를 낳고 있다. 이에 본 연구에서는 2018년 6월부터 12월까지 대전지역의 3차 병원에서 분리된 ciprofloxacin 내성 E. coli 56균주를 대상으로, 역학관계와 FQ 내성 결정인자의 양상을 조사하였다. 역학관계를 확인하기 위해 multilocus sequence typing (MLST)을 실시하였다. PCR과 염기서열 분석은 gyrA, gyrB, parC, parE 유전자의 QRDR에서 염색체상의 돌연변이와 aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD 및 qnrS와 같은 PMQR 유전자의 빈도를 확인하였다. MLST 분석 결과, 12개의 ST를 확인하였으며, 이 중 가장 우세한 ST는 ST131 (31/56, 55.4%)이었고, 순차적으로 ST1193 (13/56, 23.2%), ST405 (3/56, 5.4%)의 결과를 보였다. ciprofloxacin 내성 E. coli 56균주 중 gyrA 유전자에서 83번째 아미노산인 serine (S)이 leucine (L)으로, 87번째 아미노산인 aspartic acid (D)가 asparagine (N)으로 치환되고, parC 유전자에서 80번째 아미노산인 serine (S)이 isoleucine (I)으로, 84번째 아미노산인 glutamic acid (E)가 valine (V)으로 치환된 결과(29/56, 51.8%)가 가장 빈번하게 확인되었고, aac(6)-Ib-cr (19/56, 33.9%)은 가장 흔한 PMQR 유전자로 확인되었다. 이러한 FQ 내성 결정인자의 결과는 다른 클론과 비교하여 ST131에서 더 빈번하게 확인되었다. ciprofloxacin 내성 E. coli 균주에 대한 역학적 특성의 지속적인 모니터링과 FQ 내성 결정인자에 대한 추가 연구가 필요할 것으로 사료된다.

Fluoroquinolone (FQ) resistant gram-negative pathogens have emerged worldwide, and the recent increase in FQ resistant Escherichia coli is of great concern in Korea. This study investigated FQ resistance determinants and the epidemiological relationship of 56 ciprofloxacin-resistant E. coli isolated from a tertiary hospital in Daejeon, South Korea from June to December 2018. Molecular epidemiology was investigated by multilocus sequence typing (MLST). Polymerase chain reaction (PCR) and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC, and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance (PMQR) genes: aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS. MLST analysis showed 12 sequence types (STs) and the most prevalent ST was ST131 (31/56, 55.4%), followed by ST1193 (13/56, 23.2%), and ST405 (3/56, 5.4%). In 56 ciprofloxacin-resistant E. coli isolates, Ser83→Leu and Asp87→Asn in gyrA and Ser80→Ile and Glu84→Val in parC (51.8%, 29/56) were the most frequent amino acid substitutions and aac(6)-Ib-cr (33.9%, 19/56) was the most common PMQR gene. These results of FQ resistance determinants were more frequently observed in ST131 compared with other clones. Continuous monitoring of the epidemiological characteristics of ciprofloxacin-resistant E. coli isolates and further investigation of FQ resistance determinants are necessary.

키워드

과제정보

This paper was supported by academic research fund offered from Daejeon Institute of Science and Technology in 2021.

참고문헌

  1. Moreira da Silva RCR, de Oliveira Martins Junior P, Goncalves LF, de Paulo Martins V, de Melo ABF, Pitondo-Silva A, et al. Ciprofloxacin resistance in uropathogenic Escherichia coli isolates causing community-acquired urinary infections in Brasilia, Brazil. J Glob Antimicrob Resist. 2017;9:61-67. https://doi.org/10.1016/j.jgar.2017.01.009
  2. Daoud N, Hamdoun M, Hannachi H, Gharsallah C, Mallekh W, Bahri O. Antimicrobial susceptibility patterns of Escherichia coli among tunisian outpatients with community-acquired urinary tract infection (2012-2018). Curr Urol. 2020;14:200-205. https://doi.org/10.1159/000499238
  3. Ko WC, Hsueh PR. Increasing extended-spectrum beta-lactamase production and quinolone resistance among gram-negative bacilli causing intra-abdominal infections in the Asia/Pacific region: data from the smart study 2002-2006. J Infect. 2009;59:95-103. https://doi.org/10.1016/j.jinf.2009.06.003
  4. Aoike N, Saga T, Sakata R, Yoshizumi A, Kimura S, Iwata M, et al. Molecular characterization of extraintestinal Escherichia coli isolates in Japan: relationship between sequence types and mutation patterns of quinolone resistance-determining regions analyzed by pyrosequencing. J Clin Microbiol. 2013;51:1692-1698. https://doi.org/10.1128/JCM.03049-12
  5. Drlica K, Hiroshi H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9:981-998. https://doi.org/10.2174/156802609789630947
  6. Becnel Boyd L, Maynard MJ, Morgan-Linnell SK, Horton LB, Sucgang R, Hamill RJ, et al. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates. Antimicrob Agents Chemother. 2009;53:229-234. https://doi.org/10.1128/AAC.00722-08
  7. Onseedaeng S, Ratthawongjirakul P. Rapid detection of genomic mutations in gyrA and parC genes of Escherichia coli by multiplex allele specific polymerase chain reaction. J Clin Lab Anal. 2016;30:947-955. https://doi.org/10.1002/jcla.21961
  8. Minarini L, Darini A. Mutations in the quinolone resistance determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol 2012;43:1309-1314. https://doi.org/10.1590/S1517-838220120004000010
  9. Nam YS, Cho SY, Yang HY, Park KS, Jang JH, Kim YT, et al. Investigation of mutation distribution in DNA gyrase and topoisomerase IV genes in ciprofloxacinnon-susceptible Enterobacteriaceae isolated from blood cultures in a tertiary care university hospital in South Korea, 2005-2010. Int J Antimicrob Agents 2013;41:126-129. https://doi.org/10.1016/j.ijantimicag.2012.10.004
  10. Bansala S, Tandona V. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Int J Antimicrob Agents 2011;37:253-255. https://doi.org/10.1016/j.ijantimicag.2010.11.022
  11. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6:4. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
  12. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother. 2009;53:639-645. https://doi.org/10.1128/AAC.01051-08
  13. Zurfluh K, Abgottspon H, Hachler H, Nuesch-Inderbinen M, Stephan R. Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. PLoS One. 2014;9:e95864. https://doi.org/10.1371/journal.pone.0095864
  14. Rodriguez-Martinez JM, Machuca J, Cano ME, Calvo J, Martinez-Martinez L, Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat. 2016;29:13-29. https://doi.org/10.1016/j.drup.2016.09.001.
  15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement, M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
  16. Cho HH. Comparative analysis of uropathogenic Escherichia coli ST131 and non-ST131 isolated from urinary tract infection patients in Daejeon. Korean J Clin Lab Sci. 2020;52:342-348. https://doi.org/10.15324/kjcls.2020.52.4.342
  17. Fendukly F, Karlsson I, Hanson HS, Kronvall G, Dornbusch K. Patterns of mutations in target genes in septicemia isolates of Escherichia coli and Klebsiella pneumoniae with resistance or reduced susceptibility to ciprofloxacin. APMIS. 2003;111:857-866. https://doi.org/10.1034/j.1600-0463.2003.1110904.x
  18. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50: 3953-3955. https://doi.org/10.1128/AAC.00915-06
  19. Karczmarczyk M, Martins M, McCusker M, Mattar S, Amaral L, Leonard N, et al. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars. FEMS Microbiol Lett. 2010;313:10-19. https://doi.org/10.1111/j.1574-6968.2010.02119.x
  20. Ko KS, Suh JY, Peck KR, Lee MY, Oh WS, Kwon KT, et al. In vitro activity of fosfomycin against ciprofloxacin-resistant or extended-spectrum β-lactamase-producing Escherichia coli isolated from urine and blood. Diagn Microbiol Infect Dis. 2007;58:111-115. https://doi.org/10.1016/j.diagmicrobio.2006.11.015
  21. Lee MY, Choi HJ, Choi JY, Song M, Song Y, Kim SW, et al. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J Infect. 2010;60:146-53. https://doi.org/10.1016/j.jinf.2009.11.004
  22. Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect Dis. 2015;15:545. https://doi.org/10.1186/s12879-015-1282-4
  23. Cagnacci S, Gualco L, Debbia E, Schito GC, Marchese A. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol. 2008;46: 2605-2612. https://doi.org/10.1128/JCM.00640-08
  24. Suzuki S, Shibata N, Yamane K, Wachino J, Ito K, Arakawa Y. Change in the prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother. 2009;63:72-79. https://doi.org/10.1093/jac/dkn463
  25. Kim B, Seo MR, Kim J, Kim Y, Wie SH, Ki M, et al. Molecular epidemiology of ciprofloxacin-resistant Escherichia coli isolated from community-acquired urinary tract infections in Korea. Infect Chemother. 2020;52:194-203. https://doi.org/10.3947/ic.2020.52.2.194
  26. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:1-14. https://doi.org/10.1093/jac/dkq415
  27. Zhao L, Zhang J, Zheng B, Wei Z, Shen P, Li S, et al. Molecular epidemiology and genetic diversity of fluoroquinolone-resistant Escherichia coli isolates from patients with community-onset infections in 30 Chinese county hospitals. J Clin Microbiol. 2015;53:766-770. https://doi.org/10.1128/JCM.02594-14
  28. Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68:40-45. https://doi.org/10.1093/jac/dks365
  29. Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH, Upton M. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother. 2015;70:2752-2762. https://doi.org/10.1093/jac/dkv188
  30. Roy Chowdhury P, McKinnon J, Liu M, Djordjevic SP. Multidrug resistant uropathogenic Escherichia coli ST405 with a novel, composite IS26 transposon in a unique chromosomal location. Front Microbiol. 2019;9:3212. https://doi.org/10.3389/fmicb.2018.03212