Browse > Article
http://dx.doi.org/10.15324/kjcls.2021.53.3.217

Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli  

Cho, Hye Hyun (Departments of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
Publication Information
Korean Journal of Clinical Laboratory Science / v.53, no.3, 2021 , pp. 217-224 More about this Journal
Abstract
Fluoroquinolone (FQ) resistant gram-negative pathogens have emerged worldwide, and the recent increase in FQ resistant Escherichia coli is of great concern in Korea. This study investigated FQ resistance determinants and the epidemiological relationship of 56 ciprofloxacin-resistant E. coli isolated from a tertiary hospital in Daejeon, South Korea from June to December 2018. Molecular epidemiology was investigated by multilocus sequence typing (MLST). Polymerase chain reaction (PCR) and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC, and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance (PMQR) genes: aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS. MLST analysis showed 12 sequence types (STs) and the most prevalent ST was ST131 (31/56, 55.4%), followed by ST1193 (13/56, 23.2%), and ST405 (3/56, 5.4%). In 56 ciprofloxacin-resistant E. coli isolates, Ser83→Leu and Asp87→Asn in gyrA and Ser80→Ile and Glu84→Val in parC (51.8%, 29/56) were the most frequent amino acid substitutions and aac(6)-Ib-cr (33.9%, 19/56) was the most common PMQR gene. These results of FQ resistance determinants were more frequently observed in ST131 compared with other clones. Continuous monitoring of the epidemiological characteristics of ciprofloxacin-resistant E. coli isolates and further investigation of FQ resistance determinants are necessary.
Keywords
Fluoroquinolone; Plasmid mediated quinolone resistance; Quinolone resistance determining regions; Sequence type 131;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aoike N, Saga T, Sakata R, Yoshizumi A, Kimura S, Iwata M, et al. Molecular characterization of extraintestinal Escherichia coli isolates in Japan: relationship between sequence types and mutation patterns of quinolone resistance-determining regions analyzed by pyrosequencing. J Clin Microbiol. 2013;51:1692-1698. https://doi.org/10.1128/JCM.03049-12   DOI
2 Drlica K, Hiroshi H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9:981-998. https://doi.org/10.2174/156802609789630947   DOI
3 Moreira da Silva RCR, de Oliveira Martins Junior P, Goncalves LF, de Paulo Martins V, de Melo ABF, Pitondo-Silva A, et al. Ciprofloxacin resistance in uropathogenic Escherichia coli isolates causing community-acquired urinary infections in Brasilia, Brazil. J Glob Antimicrob Resist. 2017;9:61-67. https://doi.org/10.1016/j.jgar.2017.01.009   DOI
4 Cagnacci S, Gualco L, Debbia E, Schito GC, Marchese A. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol. 2008;46: 2605-2612. https://doi.org/10.1128/JCM.00640-08   DOI
5 Karczmarczyk M, Martins M, McCusker M, Mattar S, Amaral L, Leonard N, et al. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars. FEMS Microbiol Lett. 2010;313:10-19. https://doi.org/10.1111/j.1574-6968.2010.02119.x   DOI
6 Ko KS, Suh JY, Peck KR, Lee MY, Oh WS, Kwon KT, et al. In vitro activity of fosfomycin against ciprofloxacin-resistant or extended-spectrum β-lactamase-producing Escherichia coli isolated from urine and blood. Diagn Microbiol Infect Dis. 2007;58:111-115. https://doi.org/10.1016/j.diagmicrobio.2006.11.015   DOI
7 Lee MY, Choi HJ, Choi JY, Song M, Song Y, Kim SW, et al. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J Infect. 2010;60:146-53. https://doi.org/10.1016/j.jinf.2009.11.004   DOI
8 Suzuki S, Shibata N, Yamane K, Wachino J, Ito K, Arakawa Y. Change in the prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother. 2009;63:72-79. https://doi.org/10.1093/jac/dkn463   DOI
9 Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:1-14. https://doi.org/10.1093/jac/dkq415   DOI
10 Ko WC, Hsueh PR. Increasing extended-spectrum beta-lactamase production and quinolone resistance among gram-negative bacilli causing intra-abdominal infections in the Asia/Pacific region: data from the smart study 2002-2006. J Infect. 2009;59:95-103. https://doi.org/10.1016/j.jinf.2009.06.003   DOI
11 Onseedaeng S, Ratthawongjirakul P. Rapid detection of genomic mutations in gyrA and parC genes of Escherichia coli by multiplex allele specific polymerase chain reaction. J Clin Lab Anal. 2016;30:947-955. https://doi.org/10.1002/jcla.21961   DOI
12 Minarini L, Darini A. Mutations in the quinolone resistance determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol 2012;43:1309-1314. https://doi.org/10.1590/S1517-838220120004000010   DOI
13 Becnel Boyd L, Maynard MJ, Morgan-Linnell SK, Horton LB, Sucgang R, Hamill RJ, et al. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates. Antimicrob Agents Chemother. 2009;53:229-234. https://doi.org/10.1128/AAC.00722-08   DOI
14 Nam YS, Cho SY, Yang HY, Park KS, Jang JH, Kim YT, et al. Investigation of mutation distribution in DNA gyrase and topoisomerase IV genes in ciprofloxacinnon-susceptible Enterobacteriaceae isolated from blood cultures in a tertiary care university hospital in South Korea, 2005-2010. Int J Antimicrob Agents 2013;41:126-129. https://doi.org/10.1016/j.ijantimicag.2012.10.004   DOI
15 Zhao L, Zhang J, Zheng B, Wei Z, Shen P, Li S, et al. Molecular epidemiology and genetic diversity of fluoroquinolone-resistant Escherichia coli isolates from patients with community-onset infections in 30 Chinese county hospitals. J Clin Microbiol. 2015;53:766-770. https://doi.org/10.1128/JCM.02594-14   DOI
16 Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68:40-45. https://doi.org/10.1093/jac/dks365   DOI
17 Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH, Upton M. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother. 2015;70:2752-2762. https://doi.org/10.1093/jac/dkv188   DOI
18 Roy Chowdhury P, McKinnon J, Liu M, Djordjevic SP. Multidrug resistant uropathogenic Escherichia coli ST405 with a novel, composite IS26 transposon in a unique chromosomal location. Front Microbiol. 2019;9:3212. https://doi.org/10.3389/fmicb.2018.03212   DOI
19 Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50: 3953-3955. https://doi.org/10.1128/AAC.00915-06   DOI
20 Daoud N, Hamdoun M, Hannachi H, Gharsallah C, Mallekh W, Bahri O. Antimicrobial susceptibility patterns of Escherichia coli among tunisian outpatients with community-acquired urinary tract infection (2012-2018). Curr Urol. 2020;14:200-205. https://doi.org/10.1159/000499238   DOI
21 Kim B, Seo MR, Kim J, Kim Y, Wie SH, Ki M, et al. Molecular epidemiology of ciprofloxacin-resistant Escherichia coli isolated from community-acquired urinary tract infections in Korea. Infect Chemother. 2020;52:194-203. https://doi.org/10.3947/ic.2020.52.2.194   DOI
22 Zurfluh K, Abgottspon H, Hachler H, Nuesch-Inderbinen M, Stephan R. Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. PLoS One. 2014;9:e95864. https://doi.org/10.1371/journal.pone.0095864   DOI
23 Rodriguez-Martinez JM, Machuca J, Cano ME, Calvo J, Martinez-Martinez L, Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat. 2016;29:13-29. https://doi.org/10.1016/j.drup.2016.09.001.   DOI
24 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement, M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
25 Bansala S, Tandona V. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Int J Antimicrob Agents 2011;37:253-255. https://doi.org/10.1016/j.ijantimicag.2010.11.022   DOI
26 Fendukly F, Karlsson I, Hanson HS, Kronvall G, Dornbusch K. Patterns of mutations in target genes in septicemia isolates of Escherichia coli and Klebsiella pneumoniae with resistance or reduced susceptibility to ciprofloxacin. APMIS. 2003;111:857-866. https://doi.org/10.1034/j.1600-0463.2003.1110904.x   DOI
27 Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect Dis. 2015;15:545. https://doi.org/10.1186/s12879-015-1282-4   DOI
28 Cho HH. Comparative analysis of uropathogenic Escherichia coli ST131 and non-ST131 isolated from urinary tract infection patients in Daejeon. Korean J Clin Lab Sci. 2020;52:342-348. https://doi.org/10.15324/kjcls.2020.52.4.342   DOI
29 Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6:4. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017   DOI
30 Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother. 2009;53:639-645. https://doi.org/10.1128/AAC.01051-08   DOI