Communications for Statistical Applications and Methods
/
제3권2호
/
pp.37-42
/
1996
Maximum likelihood estimation of Cholesky decomposition is considered under normality assumption. It is shown that maximum liklihood estimation gives a Cholesky decomposition of the sample covariance matrix. The joint distribution of the maximum likelihood estimators is derived. The ussual algorithm for a Cholesky decomposition is shown to be equivalent to a maximumlikelihood estimation of a Cholesky root when the underlying distribution is a multivariate normal one.
The derivative influence measure is adapted to the Cholesky decomposition of a covariance matrix. Formulas for the derivative influence of observations on the Cholesky root and the inverse Cholesky root of a sample covariance matrix are derived. It is easy to implement this influence diagnostic method for practical use. A numerical example is given for illustration.
Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.1007-1012
/
2003
A recursive procedure for finding the Cholesky root of the inverse of sample covariance matrix, leading to a direct solution for the inverse of a positive definite matrix, is developed using the likelihood equation for the maximum likelihood estimation of the Cholesky root under normality assumptions. An example of the Hilbert matrix is considered for an illustration of the procedure.
일반화 선형혼합모델은 일반적으로 경시적 범주형 자료를 분석하는데 사용된다. 이 모델에서 임의효과는 반복 측정치들의 시간에 따른 의존성을 설명한다. 임의효과 공분산행렬의 추정은 여러가지 제약조건들 때문에 쉽지 않은 문제이다. 제약조건으로는 행렬의 모수들의 수가 많으며, 또한 추정된 공분산행렬은 양정치성을 만족하여야 한다. 이러한 제한을 극복하기 위해, 임의효과 공분산행렬의 모형화를 위한 여러가지 방법이 제안되었다: 수정 단냠레스키분해, 이동평균 단냠레스키분해와 부분 자기상관행렬을 이용한 방법이 있다. 이 논문에서 위의 제안된 방법들을 소개한다.
Communications for Statistical Applications and Methods
/
제24권1호
/
pp.81-96
/
2017
Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.
Communications for Statistical Applications and Methods
/
제20권3호
/
pp.235-240
/
2013
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.
경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.
SMI 방법은 수치적인 불안정성과 아울러 많은 계산량을 갖는다. 본 논문에서는 역 공분산 행렬의 Cholesky 분할을 이용하여 SMI 방법보다 효율적인 방법을 제안한다. 제안한 방법에서는 적응 빔 형상과 검출이 하나의 구조로 실현되며 이에 피룡한 역 공분산 행렬의 Cholesky factor는 secondary 입력으로부터 GS 프로세서를 이용하여 추정한다. 제안한 구조의 중요한 특징은 공분산 행렬과 Cholesky factor를 직접 구할 필요가 없다는 점이며, 또한 GS 프로세서의 장점을 이용한 systolic 구조를 사용함으로써 효율적인 계산을 수행할 수 있다. 모의 실험을 통하여 제안한 방법의 성능과 SMI 방법의 성능을 서로 비교하였다. 또한 nonhomogeneous 환경에서 동작하기 위한 방법이 제시되었으며, 아울러 계산량이 많은 GS 구조의 단점을 극복하기 위해 lattice-GS 구조를 이용하는 방법을 제안하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권2호
/
pp.810-831
/
2019
Recently, continuous dimensional emotion recognition from audiovisual clues has attracted increasing attention in both theory and in practice. The large amount of data involved in the recognition processing decreases the efficiency of most bimodal information fusion algorithms. A novel algorithm, namely the incomplete Cholesky decomposition based kernel cross factor analysis (ICDKCFA), is presented and employed for continuous dimensional audiovisual emotion recognition, in this paper. After the ICDKCFA feature transformation, two basic fusion strategies, namely feature-level fusion and decision-level fusion, are explored to combine the transformed visual and audio features for emotion recognition. Finally, extensive experiments are conducted to evaluate the ICDKCFA approach on the AVEC 2016 Multimodal Affect Recognition Sub-Challenge dataset. The experimental results show that the ICDKCFA method has a higher speed than the original kernel cross factor analysis with the comparable performance. Moreover, the ICDKCFA method achieves a better performance than other common information fusion methods, such as the Canonical correlation analysis, kernel canonical correlation analysis and cross-modal factor analysis based fusion methods.
본 논문에서는 필터 계수 추출을 위한 HEVC 적응적 루프 필터(ALF, Adaptive Loop Filter)의 효율적인 설계를 제안한다. ALF는 필터 계수를 추출하기 위해 $10{\times}10$ 행렬의 촐레스키 분해를 반복적으로 수행한다. ALF의 촐레스키 분해는 루트 연산 및 나눗셈 연산 등 하드웨어로 설계하기 어려운 연산들로 구성되어 있고, LCU($64{\times}64$) 한 개당 최대 30비트의 큰 값들을 소수점 단위로 연산하기 때문에 많은 연산량과 수행 시간을 필요로 한다. 본 논문에서 제안한 하드웨어 구조는 멀티플렉서와 뺄셈기, 비교기 등을 이용하여 촐레스키 분해에 사용되는 루트 연산을 구현하였다. 또한, 촐레스키 분해의 특징적인 연산 과정들을 파이프라인 구조로 설계함으로써 효율적이면서 적은 연산량을 갖는 하드웨어 구조로 구현하였다. 구현한 하드웨어는 Xilinx ISE 14.3 Vertex-6 XC6VCX240T FPGA 디바이스를 사용하여 설계하였으며, 최대 동작 주파수 150MHz에서 4K UHD($4096{\times}2160$) 영상을 초당 40프레임으로 실시간 처리할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.