• 제목/요약/키워드: Cholesky decomposition

검색결과 42건 처리시간 0.021초

On Computing a Cholesky Decomposition

  • Park, Jong-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.37-42
    • /
    • 1996
  • Maximum likelihood estimation of Cholesky decomposition is considered under normality assumption. It is shown that maximum liklihood estimation gives a Cholesky decomposition of the sample covariance matrix. The joint distribution of the maximum likelihood estimators is derived. The ussual algorithm for a Cholesky decomposition is shown to be equivalent to a maximumlikelihood estimation of a Cholesky root when the underlying distribution is a multivariate normal one.

  • PDF

INFLUENCE ANALYSIS OF CHOLESKY DECOMPOSITION

  • Kim, Myung-Geun
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.913-921
    • /
    • 2010
  • The derivative influence measure is adapted to the Cholesky decomposition of a covariance matrix. Formulas for the derivative influence of observations on the Cholesky root and the inverse Cholesky root of a sample covariance matrix are derived. It is easy to implement this influence diagnostic method for practical use. A numerical example is given for illustration.

A Cholesky Decomposition of the Inverse of Covariance Matrix

  • Park, Jong-Tae;Kang, Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.1007-1012
    • /
    • 2003
  • A recursive procedure for finding the Cholesky root of the inverse of sample covariance matrix, leading to a direct solution for the inverse of a positive definite matrix, is developed using the likelihood equation for the maximum likelihood estimation of the Cholesky root under normality assumptions. An example of the Hilbert matrix is considered for an illustration of the procedure.

  • PDF

일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰 (Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model)

  • 김지영;이근백
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.211-219
    • /
    • 2015
  • 일반화 선형혼합모델은 일반적으로 경시적 범주형 자료를 분석하는데 사용된다. 이 모델에서 임의효과는 반복 측정치들의 시간에 따른 의존성을 설명한다. 임의효과 공분산행렬의 추정은 여러가지 제약조건들 때문에 쉽지 않은 문제이다. 제약조건으로는 행렬의 모수들의 수가 많으며, 또한 추정된 공분산행렬은 양정치성을 만족하여야 한다. 이러한 제한을 극복하기 위해, 임의효과 공분산행렬의 모형화를 위한 여러가지 방법이 제안되었다: 수정 단냠레스키분해, 이동평균 단냠레스키분해와 부분 자기상관행렬을 이용한 방법이 있다. 이 논문에서 위의 제안된 방법들을 소개한다.

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models

  • Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.235-240
    • /
    • 2013
  • Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.

일반 선형 모형에 대한 공분산 행렬의 비교 (Comparison of the covariance matrix for general linear model)

  • 남상아;이근백
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.103-117
    • /
    • 2017
  • 경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.

역 공분산 행렬의 Cholesky 분할에 근거한 적응 빔 형성 및 검출 알고리즘 (Adaptive Beamforming and Detection Algorithms Based on the cholesky Decomposition of the Inverse Covariance Matrix)

  • 박영철;차일환;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • 제12권2E호
    • /
    • pp.47-62
    • /
    • 1993
  • SMI 방법은 수치적인 불안정성과 아울러 많은 계산량을 갖는다. 본 논문에서는 역 공분산 행렬의 Cholesky 분할을 이용하여 SMI 방법보다 효율적인 방법을 제안한다. 제안한 방법에서는 적응 빔 형상과 검출이 하나의 구조로 실현되며 이에 피룡한 역 공분산 행렬의 Cholesky factor는 secondary 입력으로부터 GS 프로세서를 이용하여 추정한다. 제안한 구조의 중요한 특징은 공분산 행렬과 Cholesky factor를 직접 구할 필요가 없다는 점이며, 또한 GS 프로세서의 장점을 이용한 systolic 구조를 사용함으로써 효율적인 계산을 수행할 수 있다. 모의 실험을 통하여 제안한 방법의 성능과 SMI 방법의 성능을 서로 비교하였다. 또한 nonhomogeneous 환경에서 동작하기 위한 방법이 제시되었으며, 아울러 계산량이 많은 GS 구조의 단점을 극복하기 위해 lattice-GS 구조를 이용하는 방법을 제안하였다.

  • PDF

Incomplete Cholesky Decomposition based Kernel Cross Modal Factor Analysis for Audiovisual Continuous Dimensional Emotion Recognition

  • Li, Xia;Lu, Guanming;Yan, Jingjie;Li, Haibo;Zhang, Zhengyan;Sun, Ning;Xie, Shipeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.810-831
    • /
    • 2019
  • Recently, continuous dimensional emotion recognition from audiovisual clues has attracted increasing attention in both theory and in practice. The large amount of data involved in the recognition processing decreases the efficiency of most bimodal information fusion algorithms. A novel algorithm, namely the incomplete Cholesky decomposition based kernel cross factor analysis (ICDKCFA), is presented and employed for continuous dimensional audiovisual emotion recognition, in this paper. After the ICDKCFA feature transformation, two basic fusion strategies, namely feature-level fusion and decision-level fusion, are explored to combine the transformed visual and audio features for emotion recognition. Finally, extensive experiments are conducted to evaluate the ICDKCFA approach on the AVEC 2016 Multimodal Affect Recognition Sub-Challenge dataset. The experimental results show that the ICDKCFA method has a higher speed than the original kernel cross factor analysis with the comparable performance. Moreover, the ICDKCFA method achieves a better performance than other common information fusion methods, such as the Canonical correlation analysis, kernel canonical correlation analysis and cross-modal factor analysis based fusion methods.

HEVC 부호화기를 위한 효율적인 적응적 루프 필터 설계 (An Efficient Adaptive Loop Filter Design for HEVC Encoder)

  • 신승용;박승용;류광기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.295-298
    • /
    • 2014
  • 본 논문에서는 필터 계수 추출을 위한 HEVC 적응적 루프 필터(ALF, Adaptive Loop Filter)의 효율적인 설계를 제안한다. ALF는 필터 계수를 추출하기 위해 $10{\times}10$ 행렬의 촐레스키 분해를 반복적으로 수행한다. ALF의 촐레스키 분해는 루트 연산 및 나눗셈 연산 등 하드웨어로 설계하기 어려운 연산들로 구성되어 있고, LCU($64{\times}64$) 한 개당 최대 30비트의 큰 값들을 소수점 단위로 연산하기 때문에 많은 연산량과 수행 시간을 필요로 한다. 본 논문에서 제안한 하드웨어 구조는 멀티플렉서와 뺄셈기, 비교기 등을 이용하여 촐레스키 분해에 사용되는 루트 연산을 구현하였다. 또한, 촐레스키 분해의 특징적인 연산 과정들을 파이프라인 구조로 설계함으로써 효율적이면서 적은 연산량을 갖는 하드웨어 구조로 구현하였다. 구현한 하드웨어는 Xilinx ISE 14.3 Vertex-6 XC6VCX240T FPGA 디바이스를 사용하여 설계하였으며, 최대 동작 주파수 150MHz에서 4K UHD($4096{\times}2160$) 영상을 초당 40프레임으로 실시간 처리할 수 있다.

  • PDF