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On Computing a Cholesky Decomposition

Jong Tae Parkl

Abstract

Maximum likelihood estimation of a Cholesky decomposition is considered under
normality assumptions. It is shown that maximum likelihood estimation gives a
Cholesky decomposition of the sample covariance matrix. The joint distribution of the
maximum likelihood estimators is derived. The usual algorithm for a Cholesky
decomposition is shown to be equivalent to a maximum likelihood estimation of a
Cholesky root when the underlying distribution is a multivariate normal one.

1. Introduction

The Cholesky decomposition theorem ensures that for a b by p positive definite and

symmetric matrix 2, there exists a unique lower triangular matrix A, which is called a

Cholesky root, with positive diagonal elements such that Y= AA7 (Anderson, 1984, p.586). In
general, the Cholesky root of the sample covariance matrix is not an unbiased estimator of
A. Olkin (1985), however, obtained an unbiased estimator of A by adjusting the coefficients
of each column of the Cholesky root. Eaton and Olkin (1987) showed that the Cholesky root
of the sample covariance matrix multiplied in the right by a diagonal matrix is a best
equivariant estimator of A for a variety of loss functions.

In this work maximum likelihood estimation of the Cholesky root of the covariance matrix
is considered under normality assumptions and its properties are investigated. It is also shown
that the usual algorithm for finding a Cholesky root of the sample covariance matrix is
equivalent to a maximum likelihood estimation of a Cholesky root of the population covariance
matrix when the underlying distribution is a multivariate normal one.
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2. Maximum likelihood estimation

Let X be a p-variate random vector distributed according to a multivariate normal
distribution MN(g,X) with mean vector g and positive definite covariance matrix 2 let S

be the usual unbiased estimator of X based on a sample of size N and let #=N—1. Then
nS has a Wishart distribution W,(Z, #) so that the likelihood function of 2 given S is

L(5) =3 ""exp{— 5 tr(Z7'S)} ,

when ignoring the constant terms not depending on Z. Let A be a unique lower triangular
matrix with positive diagonal elements such that X =AAT We cannot find directly the

maximum likelihood estimator of A because the likelihood function includes its inverse. This
difficulty can be avoided with a help of the invariance property of the maximum likelihood
estimators (Zehna, 1966). Putting BT=A"! gives > '=BBT and BT is also a lower

triangular matrix. Since all the products of the ¢th diagonal elements of A and BT for
i=1,...,p are one, B should be an upper triangular matrix with positive diagonal elements.
Let b; denote the (Z,/)th element of B and b; the ith column of B. Since

37 =B = e

and

x(Z'S) = u(BTSB) = % bSb;

the log-likelihood function is
(5 = 2L leba— %, 7S bi).

Let s; denote the #th column of the sample covariance matrix S and s; the (z, )th element
of S. Taking partial derivatives of /(ZX) with respect to b; and setting them equal to zero
gives

"};— = 57 b (i=1,...p). ey

Since b;=0 for #<j, the result obtained by taking partial derivatives of XAZ) with respect to
b; (i>7) and by setting them equal to zero can be written as

s;T b = 0 (1<j<i<p). 2)
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The vector 3; has zeros for the last p—17 elements. Hence the likelihood equations (1) and

(2) can be rearranged in a simple form like
Sl ,Bl = cl (i= 1) "'1p)1 (3)
where S; denotes the leading principal submatrix of S having order i, ’Bi is the column

vector b;( by, ---, b:)T of dimension i, and ¢; is the column vector of dimension ¢
having zeros for the first 7—1 elements and one for the last element. Thus the maximum

likelihood estimators E; are found recursively through the 2,-.

3. Some properties of a Cholesky decomposition

PN

Let 2;[ 21, A; [ A], and B; [ B be the leading principal submatrices of

[ 31, AL A, BI[ B , respectively, each having order i A matrix with subscript
—1 indicates a submatrix obtained by deleting the first (»—7) rows and columns.

Lemma 1. If 3 [ 2'] has a Cholesky decomposition as
3= AAT [ = AAN
or equivalently
' =pB88" [ $' = BB"],
then we have for i=1,...,p
5= AAT [ 3 = A AN
or equivalently

(2_1)—; = B—;Bz.' [ ( 2—1)—.' = B—,‘ E—iT] .
Furthermore BI=A7! [ 3,-T= A\,-—l] and B'=(BY), [ B '=( BN for
i=1,..,p

Lemma 1 is easily proved by partitioning the corresponding matrices and using the
invariance property of the maximum likelihood estimators. We are sometimes interested in a
marginal distribution and in such a case Lemma 1 will be useful. A choice of a subset of
variables needs consecutive reordering so that selected variables occupy labels in the first
part.
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Let S;; be the (i—1) by (i—1) submatrix obtained by deleting the ith row and the jth
column of S; for 1<j<i<p. Note that S;;,= S;_,. From the likelihood equations (1) and (2)

together with Cramer’s rule, we get relationships among the maximum likelihood estimators
and cofactors of the leading principal submatrices as in the following lemma.

Lemma 2. For 1<j<:<p, the likelihood equations (1) and (2) imply

5112 = "1- (i= j= 1) (4)

S
and

by b; = (=1 llss“f (>1). (5)

The likelihood equations (1) and (2) yield directly that
B'SB = 1,

and therefore r

S=AA. 6)
Hence the maximum likelihood estimation under normality assumptions gives the usual
Cholesky decomposition of the sample covariance matrix.
Now we know that the sample covariance matrix has a unique Cholesky root consisting of
the maximum likelihood estimators. Since S=A A\T, the joint distribution of the é\,-,- (1<)

is that of the usual Cholesky root of the sample covariance matrix and which is given by

!Ezl ~ =i n -1 & BT Hp-T
n (ﬁl a; )exp{—-z—tr(A A A A
Hn=2) pp—1) .
27 7 I e n 2=ty

after a simple algebra of calculations(see Anderson, 1984, Theorem 7.2.1).
Thus the joint distribution of the Ehg (h<g) can be obtained using that of the aj. The

partial derivatives of é\j,- (£<7) with respect to Ehg (h<g) are

9 aj ={— Qi é}z for I<h<g<j
0 otherwise
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. . . . ~ p+l .
so that the corresponding Jacobian is easily found to be ﬁ a,-,-p+. Since

=1

1
1312 = ‘Ijl a; = 1/ ’Ijl b;, the joint distribution of the 5;; (j<1) is given by

m
n (‘Ijlb?,-)exp{— _zn_ (BT BT B7'B))

n-2) HKp—1) R . .
5 1 n—i+p+l  n—i+1]
2 T ‘Ijl{ bi I 9 )}

4. Equivalence of the likelihood procedure and the usual Cholesky
decomposition

The usual algorithm for finding the lower triangular Cholesky root of S is based on a

direct comparison of the entries in the equation (6) (Golub and Van Loan, 1983, p.88). Now
we will show that the usual algorithm is equivalent to a maximum likelihood estimation
approach. The equation (6) can be expressed as

A = SB
which gives

a = s b (i<)). )
This complements the likelihood equation (2). Let ﬁ; be the leading principal submatrix of

B having order j and let w; ;= (sy, -, 85) " Since @y b;=1 (1<j<p), the equation (4)
gives

-~

— A2
a;) = S

and from (5) together with the symmetry of S, we have for F<2

1/2
a; = T 1
1Sl

To-1 1/2
(s;— wi.i—lTsi—l w;j-1) /T
172
(si— wi; Biy Biy wij)

_1 A~
= (Sji— igl a;’iz)llz by (7).
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Let ’Bi.j= bi( by, e, 5\;,<)T. For j>i, we have

(87 b)) by = wio Buiatss b’
= (= w1 S wiatsy) b by (3)
-1

2 -~ -~
= 5;;‘ (sji— ]El Ay Q).

Hence we get

~ 1 ol oL A s
aj = —é‘a(sii— El ai aw) (0.
Thus we can conclude that the usual algorithm for finding a Cholesky root of the sample
covariance matrix is equivalent to a maximum likelihood estimation of a Cholesky root of the
population covariance matrix under normality assumnptions.

References

[11 Anderson, T.W. (1984). An introduction to multivariate statistical analysis, 2nd Ed. New
York: Wiley.

[2] Eaton, M.L. and Olkin, I. (1987). Best equivariant estimators of a Cholesky decomposition,
Annals of Statistics, Vol. 15, 1639-1650.

[3] Golub, G.H. and Van Loan, C. (1983). Matrix computations, The Johns Hopkins University
Press, Baltimore, Maryland.

[4] Olkin, L. (1985). Estimating a Cholesky decomposition, Linear Algebra and Its Applications,
Vol. 67, 201-205.

(5] Zehna, P.W. (1966). Invariance of maximum likelihood estimation, Annals of Mathematical
Statistics, Vol. 37, 744.



