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INFLUENCE ANALYSIS OF CHOLESKY DECOMPOSITION

MYUNG GEUN KIM

ABSTRACT. The derivative influence measure is adapted to the Cholesky
decomposition of a covariance matrix. Formulas for the derivative influence
of observations on the Cholesky root and the inverse Cholesky root of a
sample covariance matrix are derived. It is easy to implement this influence
diagnostic method for practical use. A numerical example is given for
illustration.
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1. Introduction

Cholesky decomposition has been used in many areas of statistics, for ex-
ample in multiple regression[5], in linear mixed-effects model[9], in longitudinal
data[l11], etc. A modified Cholesky decomposition was considered by [12] in
which more references can be found.

Diagnostic methods have been suggested in wide areas of statistics and some
of them are included in [2] and [1]. A sample covariance matrix is very sensitive
to outliers, and so is the Cholesky root of it. Thus it is necessary to devise
diagnostic methods of measuring the influence of observations on the Cholesky
root. The influence of observations on the Cholesky root of a sample covariance
matrix was investigated by [7] using the influence function. However, no other
method is available to the best of my knowledge.

In this work the derivative influence measure suggested by [3] is adapted to the
Cholesky decomposition of a covariance matrix. This influence measure needs a
perturbation scheme in which all the other observations have the same distribu-
tion except for only one observation which is distributed as another distribution.
The slope of the perturbed estimator under this perturbation scheme is consid-
ered in order to investigate the influence of observations on the estimator of
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interest. In Section 2, we consider an appropriate perturbation scheme under
which the perturbed maximum likelihood estimators of the model parameters
under the multivariate normality are found. We derive formulas for the deriva-
tive influence on the Cholesky root of a sample covariance matrix in Section 3.
The inverse Cholesky root is considered in Section 4. The formulas derived in
Sections 3 and 4 are similar to those based on the influence function considered
by [7]. A numerical example is provided for illustration in Section 5.

2. Preliminaries

A random sample of size n, {1,Z2, - ,z,}, from a p-variate normal distri-
bution, N(u, ) with mean vector p and positive definite covariance matrix X
is drawn. The maximum likelihood estimators (MLEs) of ;1 and X based on the
sample of size n are denoted by Z and S, respectively. It is well known that the
sample covariance matrix S is positive definite with probability one if and only
if n > p ([4]). Thus it is assumed that the sample size is sufficiently large, in
order to ensure that the sample covariance matrix S is positive definite.

Under normality assumption, it can be easily checked that the MLE of the
Cholesky root of the covariance matrix ¥ is just the Cholesky root of the MLE of
2. First, we reparametrize the covarianve matrix X as a product of the Cholesky
root and its transpose. Then we find the likelihood equations of the Cholesky
root, which become equivalent to the usual Cholesky algorithm.

For each s = 1,2,-.-,n, we consider a perturbation scheme in which all
observations have N(u,X) as their common distribution, except for the sth ob-
servation s which is distributed as N(u, Z/ws). When ws = 1, it reduces to the
unperturbed scheme. Under this perturbation scheme, the perturbed MLEs of y
and ¥ will be derived here for easy understanding. The log-likelihood function
up to unimportant terms is

n 1 _ w _
U, 2!“’3) ) log |Z] - 9 (zr _N)TE l(x*r —p)— 78(333 —N)TE 1(333 ~ )
r#s »
First, 0l(u, X|ws)/0p = 0 yields the perturbed MLE of p as
n 4 ws— 1
ws+n—1 ws—l—n—lxs'

fi(ws) =

Let 0;; and 0% be the elements in the ith row and jth column of ¥ and 7!,
respectively. Then we have

Ollp, 2|ws) - _ _n VTN N Ts-1 0%
(90’1'_]- 9 (2 6”)0- + 9 é(zx?‘ :u) ) 80}'3‘2 (xr - /-5)
W _, 08 __
+(zs — )" BT =07 (@ — p)
2 80’1']'

using the following formulas (refer to Chap. 8 of [10] for more details)
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log|® : g ox—1 ox
0 Ogl | = (2 - (‘)}j)a” and = —2_1——2—1,
801-]- O'ij 80’ij
where 0;; is the Kronecker delta function. In order to solve dl(u, L|ws)/00i; = 0,
we need more computations and first, we can easily get

~ — Wgs _1 —
T, — Mws) =2, — F — m_—l(ws —I) (r #s)
- n _
s — lj/(ws) = w—sm(ﬁvs - CB).

Since Y°"_ (z, —z)(zs —Z)T =0, we have
n

Z(:vr %)z, — 1) = —(zs — ) (zs - T)7.
r#s
With the above results, a little computation shows that

Z(xr — (ws))(zr — ﬂ(U’S))T

r#£8
= 4 D P (et D=1, gy, gy

and therefore the likelihood equation 0l(y, X|ws)/00s; = 0 gives

» 0%
— 5\ — -1 -1
n(2 — d;;)o tr { Bos; YT Q(ws)XE } :

where

(ﬂwﬁ=n5+£§%§%%®y—ﬂus—@f
Since tr{(@E/@aij)E_lQ(ws)E_l} = (2—6;;) X (4, ) element of T71Q(ws) L1,

the perturbed MLE of 0% is the (4, j) element of S(w;)~1Q(ws)S(ws)~/n, when
it is denoted by S(w;) the perturbed MLE of £, so that we have S(ws)~! =
S(ws) " Q(ws)S(ws) ! /n. Thus the perturbed MLE of ¥ turns out to be

ws — 1 '

m(xs —z)(zs — 7)". (1)

For a parameter 8 of interest, we write its MLE and the corresponding per-
turbed MLE under the above perturbation scheme as 6 and 6(w;), respectively.
When ws; = 1, the perturbed MLE 6(w;) reduces to the unperturbed MLE

d. De Gruttola et al.[3] suggested an influence measure, which they called the
derivative influence, defined by

smg:%ng=s+

d0(wy)

ows lw,=1

in order to investigate the influence of the sth observation zs on the estimator
. A large absolute value of the derivative influence implies high influence. This
influence measure can be easily implemented in wide area of applications.
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3. Cholesky root

The Cholesky decompositions of S and S(ws) can be expressed as
S = AAT and S(w,) = A(ws)A(w,)7,

respectively, where A = (a;;) and A(w;s) = (a;;(ws)) are the lower triangular
matrices with positive diagonal elements. Since S(w;) is the perturbed MLE of
¥, S(ws) is the perturbed counterpart of S. Further, by the analogy with the
unperturbed case stated in Section 2, the Cholesky root A(w;s) of S(w;s) is the
perturbed MLE of the Cholesky root of ¥. Hence the Cholesky root A(ws) of
S(ws) is the perturbed counterpart of the Cholesky root A of S. The assumption
of positive definiteness ensures the uniqueness of the Cholesky root.

In view of (1), when we put z = (21,22, -+, 2p) = Ts — T, We can write
ws — 1 1T ws — 1 T
A(ws)A(ws)T = AAT S S — 2| . 2
(e dfe) e =] - @

In order to express the elements of A(w;) in terms of those of A, we need a
variant of the usual Cholesky algorithm ([13], p.142) which can be easily derived
as in what follows

1/2
2 .
el Y- zazkws] Gsisp @

aii(ws) =

aij(ws) = ajj(ws)_l [ ws = 1 Zzzg + Zazkaﬂc - Zazk(ws)a]k(ws)}ll)

ws +n —
(1<j<i<p).
Note that a;5 = aij(ws) w,=1. Let
' : daij(ws) Lo :
o= NS 1< 9<1< ).
&ij dw,  lw.=1 (1<j<i<p)

Then &;; is the derivative influence which measures the influence of z, on the
estimator a;;. We will find &;; recursively as follows. Differentiating both sides
of (3) and (4) with respect to ws and then evaluating the resulting equations at
ws = 1 yield

> aikn = %zz‘? (I<i<p) (3)
k=1 o

d 1

D (ann + ajpbix) = ~zi2j (17 <i<p). (6)

k=1
A procedure for computing &;; from (5) and (6) can be described as follows.

For:=1,2,--,p"
()For]'— 1,2,---,i—1
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compute &;; using (6)
(ii) compute &;; using (5)

Equations (5) and (6) can be expressed in a matrix form as follows. We denote
by K the lower triangular matrix whose (7, k)th element is given by &;z. Then
(5) and (6) can be collected in a matrix form

AKT + KAT = %zzT. (7)

This equation for the derivative influence is similar to that for the influence
function given in the equation above (14) of [7] which includes one more term S
in the left-hand side of (7). Since K = 0A(ws)/0ws|w,=1, a direct differentiation
of both sides of (2) with respect to w, can also lead to (7).

4. Inverse Cholesky root

Let B = (b;;) and B(ws) = (b;;(ws)) be the upper triangular matrices such
that
S~! = BBT and S(w;)"! = B(w,)B(w;)T.

Then we have BT = A~! and B(w;)T = A(ws)~!, and B(ws) is the perturbed
counterpart of B. Usually, B is called the inverse Cholesky root of S.

In order to derive the influence measure for the inverse Cholesky root of S,
we will use the following equation

A{w,)T B(ws) = I (8)
When we solve this equation with respect to b;;j(ws), we get
ber(ws)ark(ws) = 1(1<k<p) - (9)
k
bir(ws)ai(ws) = — Y aji(ws)bjr(ws) (1 <i<k—1). (10)
Jj=i+1 ‘
Let
db;;(ws) o
;= —INT8) <i<j<op).
J dws wo=1 (1—/L—J—p)

Then 7;; is the derivative influence which measures the influence of zs on the
estimator b;;. We will find 7;; recursively as follows. Since b;; = b;;(ws)|w,=1,
differentiating both sides of (9) and (10) with respect to ws and then evaluatmg
the resulting equations at ws = 1 give

: b
Mek = ,—ﬁé‘u (1<k<p) : (11)
A K
k= o Zéjz‘bﬂ- + Z ajimjr | (1<i<k-1). (12)
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Using the identities agrbrr = 1 (k= 1,2, -, p), alternative expressions for (11)
and (12) can be obtained. A procedure for computing 7;; from (11) and (12)
can be described as follows.
Fork=p,p—1,---,1
(i) compute N
(ii) Fori=k—-1,k—2,---,1
compute 7;x

When we write as E the upper triangular matrix whose (7, j)th element is
given by 7;;, (11) and (12) can be expressed in a matrix form

ATE+EKTB=0
which gives
E=-BK"B.
This equation provides a relationship between the two influence measures ;; and
1ij, and incidentally, this relationship has the same form as that for the case of
the influence function given in (17) of [7]. Also, it can be derived directly from

(8) by differentiating both sides of (8) with respect to w, and then by evaluating
the resulting equations at ws; = 1 since
_ 0B(ws)

OA(ws) and F =

COwg  we=1  Ows  lwe=1

K=

Also, since BTA = AT B = I, the matrix form (7) can be expressed in terms
of the inverse Cholesky root B instead of the Cholesky root A as follows

KTB+ BTK = lBTzzTB‘
n

5. A numerical example

For illustration, we consider the cost data set ([6], p.276) which consists of 36
measurements on the per-mile cost of three variables: fuel, repair and capital in
this order.

For each i(1 < i < p), we denote by A; and B; the leading principal submatri-
ces of the Cholesky root A and the inverse Cholesky root B, respectively. Each
A; is the Cholesky root of the leading principal submatrix, having the same or-
der 4, of S, and Bf = A;!. Hence, as noted in [7], the influence of observations
on the a;;(1 <j < 1) or'the b;;(1 < j < 1) depends only on the first i variables.

Figures 1 and 2 show index plots of the derivative influence of observations
on the Cholesky root A = (a;;) and the inverse Cholesky root B = (b;;) of
the sample covariance matrix S, respectively. Observations 9 and 21 have large
influence on ay; and by;. For the marginal distribution of the first variable,
observations 9 and 21 are possible outliers based on the values of the standardized
variable. Influential observations are 21, 9 and 20 for asq; 20 for ass, b;2 and
ba2. These observations are possible outliers based on Mahalanobis distances for
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FIGURE 1. Index plots of the derivative influence on the
Cholesky root '

the bivariate distribution of the first two variables. Influential observations are
9 and 21 for a3, and b;3; none for aso and bys; 25 and 9 for ags and bs3. For
the joint distribution of all three variables, observations 9 and 21 are possible
outliers based on Mahalanobis distances and more detailed analysis of the cost
data can be found in [8] and references therein. Even though obsérvations 9 and
21 are possible outliers, they do not have little influence on a3 and b23. For ass
and b33, influential observations are not identical to the corresponding outliers.
In general, it is empirically well known that outliers need not be influential and
influential observations need not be outliers ([2], p.95). But while outliers are
often influential, not all influential observations need be outliers ([1], p.317).
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